Krzysztof Szczyglowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9201033/publications.pdf

Version: 2024-02-01

29 papers 3,910 citations

304743 22 h-index 477307 29 g-index

30 all docs 30 docs citations

30 times ranked

2686 citing authors

#	Article	IF	CITATIONS
1	A receptor kinase gene of the LysM type is involved in legumeperception of rhizobial signals. Nature, 2003, 425, 637-640.	27.8	896
2	Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature, 2002, 420, 422-426.	27.8	529
3	A Cytokinin Perception Mutant Colonized by Rhizobium in the Absence of Nodule Organogenesis. Science, 2007, 315, 101-104.	12.6	475
4	Seven Lotus japonicus Genes Required for Transcriptional Reprogramming of the Root during Fungal and Bacterial Symbiosis. Plant Cell, 2005, 17, 2217-2229.	6.6	293
5	Short root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype. Plant Journal, 2000, 23, 97-114.	5.7	268
6	Nodule Organogenesis and Symbiotic Mutants of the Model Legume Lotus japonicus. Molecular Plant-Microbe Interactions, 1998, 11, 684-697.	2.6	202
7	Cytokinin: secret agent of symbiosis. Trends in Plant Science, 2008, 13, 115-120.	8.8	170
8	Rearrangement of Actin Cytoskeleton Mediates Invasion of <i>Lotus japonicus</i> Roots by <i>Mesorhizobium loti</i> ÂÂ. Plant Cell, 2009, 21, 267-284.	6.6	149
9	Conservation of $\langle i \rangle$ Lotus $\langle j \rangle$ and Arabidopsis Basic Helix-Loop-Helix Proteins Reveals New Players in Root Hair Development Â. Plant Physiology, 2009, 151, 1175-1185.	4.8	113
10	<i>Lotus japonicus</i> Cytokinin Receptors Work Partially Redundantly to Mediate Nodule Formation. Plant Cell, 2014, 26, 678-694.	6.6	107
11	<i>Lotus japonicus ARPC1</i> Is Required for Rhizobial Infection Â. Plant Physiology, 2012, 160, 917-928.	4.8	78
12	Into the Root: How Cytokinin Controls Rhizobial Infection. Trends in Plant Science, 2016, 21, 178-186.	8.8	74
13	<i>Lotus japonicus symRKâ€14</i> uncouples the cortical and epidermal symbiotic program. Plant Journal, 2011, 67, 929-940.	5 . 7	71
14	Invasion of Lotus japonicus root hairless 1 by Mesorhizobium loti Involves the Nodulation Factor-Dependent Induction of Root Hairs. Plant Physiology, 2005, 137, 1331-1344.	4.8	63
15	Symbiosis, Inventiveness by Recruitment?. Plant Physiology, 2003, 131, 935-940.	4.8	57
16	Common and not so common symbiotic entry. Trends in Plant Science, 2010, 15, 540-545.	8.8	51
17	Genetic Suppressors of the Lotus japonicus har1-1 Hypernodulation Phenotype. Molecular Plant-Microbe Interactions, 2006, 19, 1082-1091.	2.6	45
18	<i>Lotus japonicus</i> NF-YA1 Plays an Essential Role During Nodule Differentiation and Targets Members of the <i>SHI/STY</i> Gene Family. Molecular Plant-Microbe Interactions, 2016, 29, 950-964.	2.6	44

#	Article	IF	CITATIONS
19	Negative regulation of CCaMK is essential for symbiotic infection. Plant Journal, 2012, 72, 572-584.	5.7	43
20	<i>Lotus japonicus Nuclear Factor YA1 </i> , a nodule emergence stageâ€specific regulator of auxin signalling. New Phytologist, 2021, 229, 1535-1552.	7.3	39
21	The Lotus japonicus LjNOD70 nodulin gene encodes a protein with similarities to transporters. Plant Molecular Biology, 1998, 37, 651-661.	3.9	30
22	Lotus japonicus SUNERGOS 1 encodes a predicted subunit A of a DNA topoisomerase VI that is required for nodule differentiation and accommodation of rhizobial infection. Plant Journal, 2014, 78, 811-821.	5.7	28
23	Inside out: root cortexâ€localized LHK1 cytokinin receptor limits epidermal infection of <i>Lotus japonicus</i> roots by <i>Mesorhizobium loti</i> New Phytologist, 2019, 222, 1523-1537.	7.3	24
24	Lotus genome: pod of gold for legume research. Trends in Plant Science, 2008, 13, 515-517.	8.8	16
25	Nodule-Specific Regulation of Phosphatidylinositol Transfer Protein Expression in Lotus japonicus. Plant Cell, 2001, 13, 1369-1382.	6.6	16
26	Intragenic complementation at the <i>Lotus japonicus CELLULOSE SYNTHASE-LIKE D1</i> locus rescues root hair defects. Plant Physiology, 2021, 186, 2037-2050.	4.8	13
27	Genetic supressors of Lotus japonicus har1-1 hypernodulation show altered interactions with Glomus intraradices. Functional Plant Biology, 2006, 33, 749.	2.1	7
28	Baring the roots of nodulation. Nature Plants, 2021, 7, 244-245.	9.3	5
29	Differential expression of the Sesbania rostrata leghemoglobin glb3 gene promoter in transgenic legume and non-legume plants. Plant Molecular Biology, 1996, 31, 931-935.	3.9	4