
Ivan P Savov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9201025/publications.pdf Version: 2024-02-01

Ιναν Ρ ζανον

#	Article	IF	CITATIONS
1	A record of spontaneous subduction initiation in the Izu–Bonin–Mariana arc. Nature Geoscience, 2015, 8, 728-733.	12.9	194
2	Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: Implications for the elemental recycling at subduction zones. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	2.5	183
3	Shallow slab fluid release across and along the Mariana arcâ€basin system: Insights from geochemistry of serpentinized peridotites from the Mariana fore arc. Journal of Geophysical Research, 2007, 112, .	3.3	142
4	Age of Izu–Bonin–Mariana arc basement. Earth and Planetary Science Letters, 2018, 481, 80-90.	4.4	131
5	Lithium abundance and isotope systematics of forearc serpentinites, Conical Seamount, Mariana forearc: Insights into the mechanics of slab-mantle exchange during subduction. Geochemistry, Geophysics, Geosystems, 2004, 5, .	2.5	87
6	An abrupt extinction in the Middle Permian (Capitanian) of the Boreal Realm (Spitsbergen) and its link to anoxia and acidification. Bulletin of the Geological Society of America, 2015, 127, 1411-1421.	3.3	87
7	Processes influencing extreme As enrichment in shallow-sea hydrothermal fluids of Milos Island, Greece. Chemical Geology, 2013, 348, 15-26.	3.3	81
8	Chemical and isotopic constraints on water/rock interactions at the Lost City hydrothermal field, 30°N Mid-Atlantic Ridge. Geochimica Et Cosmochimica Acta, 2008, 72, 5457-5474.	3.9	79
9	Insights into Li and Li isotope cycling and sub-arc metasomatism from veined mantle xenoliths, Kamchatka. Contributions To Mineralogy and Petrology, 2009, 158, 197-222.	3.1	79
10	Petrology and geochemistry of lava and ash erupted from VolcÃin Colima, Mexico, during 1998–2005. Journal of Volcanology and Geothermal Research, 2008, 174, 241-256.	2.1	76
11	The fate of subducted oceanic slabs in the shallow mantle: Insights from boron isotopes and light element composition of metasomatized blueschists from the Mariana forearc. Lithos, 2012, 132-133, 162-179.	1.4	76
12	Petrology and Geochemistry of West Philippine Basin Basalts and Early Palau–Kyushu Arc Volcanic Clasts from ODP Leg 195, Site 1201D: Implications for the Early History of the Izu–Bonin–Mariana Arc. Journal of Petrology, 2006, 47, 277-299.	2.8	74
13	A 7000 yr perspective on volcanic ash clouds affecting northern Europe. Geology, 2011, 39, 887-890.	4.4	66
14	11B-rich fluids in subduction zones: The role of antigorite dehydration in subducting slabs and boron isotope heterogeneity in the mantle. Chemical Geology, 2014, 376, 20-30.	3.3	66
15	Subduction zone forearc serpentinites as incubators for deep microbial life. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4324-4329.	7.1	59
16	Probabilistic approach to modeling lava flow inundation: a lava flow hazard assessment for a nuclear facility in Armenia. Journal of Applied Volcanology, 2012, 1, .	2.0	58
17	VolcÃ;n de Colima dome collapse of July, 2015 and associated pyroclastic density currents. Journal of Volcanology and Geothermal Research, 2016, 320, 100-106.	2.1	58
18	The arc arises: The links between volcanic output, arc evolution and melt composition. Earth and Planetary Science Letters, 2017, 461, 73-84.	4.4	57

Ivan P Savov

#	Article	IF	CITATIONS
19	Implications of Eocene-age Philippine Sea and forearc basalts for initiation and early history of the Izu-Bonin-Mariana arc. Geochimica Et Cosmochimica Acta, 2018, 228, 136-156.	3.9	48
20	Boron Isotopes as a Tracer of Subduction Zone Processes. Advances in Isotope Geochemistry, 2018, , 217-247.	1.4	47
21	Minor effect of physical size sorting on iron solubility of transported mineral dust. Atmospheric Chemistry and Physics, 2011, 11, 8459-8469.	4.9	44
22	Si-metasomatism in serpentinized peridotite: The effects of talc-alteration on strontium and boron isotopes in abyssal serpentinites from Hole 1268a, ODP Leg 209. Geochimica Et Cosmochimica Acta, 2014, 126, 30-48.	3.9	43
23	Evidence for boron incorporation into the serpentine crystal structure. American Mineralogist, 2011, 96, 1112-1119.	1.9	42
24	Do peatlands or lakes provide the most comprehensive distal tephra records?. Quaternary Science Reviews, 2016, 139, 110-128.	3.0	42
25	Subsurface hydrothermal processes and the bioenergetics of chemolithoautotrophy at the shallow-sea vents off Panarea Island (Italy). Chemical Geology, 2015, 407-408, 21-45.	3.3	39
26	Late Precambrian Balkan-Carpathian ophiolite — a slice of the Pan-African ocean crust?: geochemical and tectonic insights from the Tcherni Vrah and Deli Jovan massifs, Bulgaria and Serbia. Journal of Volcanology and Geothermal Research, 2001, 110, 299-318.	2.1	37
27	Origin of negative cerium anomalies in subduction-related volcanic samples: Constraints from Ce and Nd isotopes. Chemical Geology, 2018, 500, 46-63.	3.3	34
28	Tephrochronology, petrology and geochemistry of Late-Holocene pyroclastic deposits from Volcán de Colima, Mexico. Journal of Volcanology and Geothermal Research, 2010, 197, 1-32.	2.1	33
29	Evaluating the relationship between climate change and volcanism. Earth-Science Reviews, 2018, 177, 238-247.	9.1	32
30	Climatic control on Icelandic volcanic activity during the mid-Holocene. Geology, 2018, 46, 47-50.	4.4	31
31	High-K Mafic Plinian Eruptions of Volcán de Colima, Mexico. Journal of Petrology, 2014, 55, 2155-2192.	2.8	29
32	Alkaline magmas in zones of continental convergence: The Tezhsar volcano-intrusive ring complex, Armenia. Lithos, 2018, 320-321, 172-191.	1.4	27
33	Boron isotopic variations in NW USA rhyolites: Yellowstone, Snake River Plain, Eastern Oregon. Journal of Volcanology and Geothermal Research, 2009, 188, 162-172.	2.1	26
34	Estimating the frequency of volcanic ash clouds over northern Europe. Earth and Planetary Science Letters, 2017, 460, 41-49.	4.4	23
35	No significant boron in the hydrated mantle of most subducting slabs. Nature Communications, 2018, 9, 4602.	12.8	23
36	Basalt derived from highly refractory mantle sources during early Izu-Bonin-Mariana arc development. Nature Communications, 2021, 12, 1723.	12.8	23

Ινάν Ρ δάνον

#	Article	IF	CITATIONS
37	Spatial variability of tephra and carbon accumulation in a Holocene peatland. Quaternary Science Reviews, 2015, 124, 248-264.	3.0	22
38	Crystallization conditions and petrogenesis of the lava dome from the â^1⁄4900ÂyearsÂBP eruption of Cerro MachÃn Volcano, Colombia. Journal of South American Earth Sciences, 2013, 48, 193-208.	1.4	20
39	New constraints from Central Chile on the origins of enriched continental compositions in thick-crusted arc magmas. Geochimica Et Cosmochimica Acta, 2019, 267, 51-74.	3.9	20
40	The transport of Icelandic volcanic ash: Insights from northern European cryptotephra records. Journal of Geophysical Research: Solid Earth, 2016, 121, 7177-7192.	3.4	19
41	A limited role for metasomatized subarc mantle in the generation of boron isotope signatures of arc volcanic rocks. Geology, 2019, 47, 517-521.	4.4	18
42	GPR investigation of tephra fallout, Cerro Negro volcano, Nicaragua: a method for constraining parameters used in tephra sedimentation models. Bulletin of Volcanology, 2012, 74, 1409-1424.	3.0	17
43	Origin of diverse geochemical signatures in igneous rocks from the West Philippine Basin: Implications for tectonic models. Geophysical Monograph Series, 2006, , 287-303.	0.1	17
44	Sodic Pyroxene and Sodic Amphibole as Potential Reference Materials for <i>In Situ</i> Lithium Isotope Determinations by SIMS. Geostandards and Geoanalytical Research, 2008, 32, 295-310.	3.1	16
45	The presence of Holocene cryptotephra in Wales and southern England. Journal of Quaternary Science, 2017, 32, 493-500.	2.1	16
46	Boron isotope insights into the origin of subduction signatures in continent-continent collision zone volcanism. Earth and Planetary Science Letters, 2020, 538, 116207.	4.4	16
47	Late Cretaceous UHP metamorphism recorded in kyanite–garnet schists from the Central Rhodope Mountains, Bulgaria. Lithos, 2016, 246-247, 165-181.	1.4	14
48	Deciphering variable mantle sources and hydrous inputs to arc magmas in Kamchatka. Earth and Planetary Science Letters, 2021, 562, 116848.	4.4	13
49	Sedimentary and volcanic record of the nascent Izu-Bonin-Mariana arc from IODP Site U1438. Bulletin of the Geological Society of America, 2020, , .	3.3	11
50	Temporal Evolution of Proto-Izu–Bonin–Mariana Arc Volcanism over 10 Myr: Constraints from Statistical Analysis of Melt Inclusion Compositions. Journal of Petrology, 2020, 61, .	2.8	10
51	Vesuvianite in high-pressure-metamorphosed oceanic lithosphere (Raspas Complex, Ecuador) and its role for transport of water and trace elements in subduction zones. European Journal of Mineralogy, 2013, 25, 193-219.	1.3	9
52	Volcanic ash clouds affecting Northern Europe: the long view. Geology Today, 2013, 29, 214-217.	0.9	9
53	Paleoenvironmental conditions recorded by 87Sr/86Sr, î´13C and δ18O in late Pliensbachian–Toarcian (Jurassic) belemnites from Bulgaria. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 409, 98-113.	2.3	8
54	Volcaniclastic sandstones record the influence of subducted Pacific MORB on magmatism at the early Izu-Bonin arc. Geochimica Et Cosmochimica Acta, 2021, 296, 170-188.	3.9	8

Ινάν Ρ δανον

#	Article	IF	CITATIONS
55	First discovery of Holocene cryptotephra in Amazonia. Scientific Reports, 2015, 5, 15579.	3.3	7
56	Reply to 'Unclear causes for subduction'. Nature Geoscience, 2016, 9, 338-339.	12.9	7
57	Evaluating tephrochronology in the permafrost peatlands of northern Sweden. Quaternary Geochronology, 2019, 50, 16-28.	1.4	7
58	Post-collisional shift from polygenetic to monogenetic volcanism revealed by new 40Ar/39Ar ages in the southern Lesser Caucasus (Armenia). Journal of Volcanology and Geothermal Research, 2021, 412, 107192.	2.1	6
59	Raman spectroscopy for the discrimination of tephras from the Hekla eruptions of AD 1510 and 1947. Holocene, 2016, 26, 432-438.	1.7	5
60	Standard chemicalâ€based tephra extraction methods significantly alter the geochemistry of volcanic glass shards. Journal of Quaternary Science, 2019, 34, 697-707.	2.1	5
61	Challenges of determining frequency and magnitudes of explosive eruptions even with an unprecedented stratigraphy. Journal of Applied Volcanology, 2019, 8, .	2.0	4
62	Formation of ultrapotassic magma via crustal contamination and hybridization of mafic magma: an example from the Stomanovo monzonite, Central Rhodope Massif, Bulgaria. Geological Magazine, 0, , 1-16.	1.5	3
63	Historical and morphological evidence for multi-stage growth of El Volcancito, Volcán de Colima. Journal of Volcanology and Geothermal Research, 2022, 421, 107447.	2.1	3
64	Holocene Eruption History and Magmatic Evolution of the Colima Volcanic Complex. Active Volcanoes of the World, 2019, , 1-25.	1.4	2
65	Is there a climatic control on Icelandic volcanism?. Quaternary Science Advances, 2020, 1, 100004.	1.9	2
66	Crystallization and Segregation of Syenite in Shallow Mafic Sills: Insights from the San Rafael Subvolcanic Field, Utah. Journal of Petrology, 2021, 61, .	2.8	2
67	Vesuvianite in high-pressure-metamorphosed oceanic lithosphere (Raspas Complex, Ecuador) and its role for transport of water and trace elements in subduction zones. European Journal of Mineralogy, 2014, 25, 1039-1039.	1.3	0