GastÃ³n O LarrazÃ;bal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9200981/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy and Environmental Science, 2013, 6, 3112.	30.8	1,475
2	Towards sustainable fuels and chemicals through the electrochemical reduction of CO ₂ : lessons from water electrolysis. Green Chemistry, 2015, 17, 5114-5130.	9.0	288
3	Sulfur-Modified Copper Catalysts for the Electrochemical Reduction of Carbon Dioxide to Formate. ACS Catalysis, 2018, 8, 837-844.	11.2	209
4	Analysis of Mass Flows and Membrane Cross-over in CO ₂ Reduction at High Current Densities in an MEA-Type Electrolyzer. ACS Applied Materials & Interfaces, 2019, 11, 41281-41288.	8.0	188
5	Enhanced Reduction of CO ₂ to CO over Cu–In Electrocatalysts: Catalyst Evolution Is the Key. ACS Catalysis, 2016, 6, 6265-6274.	11.2	170
6	Building Blocks for High Performance in Electrocatalytic CO ₂ Reduction: Materials, Optimization Strategies, and Device Engineering. Journal of Physical Chemistry Letters, 2017, 8, 3933-3944.	4.6	147
7	Lignin repolymerisation in spruce autohydrolysis pretreatment increases cellulase deactivation. Green Chemistry, 2015, 17, 3521-3532.	9.0	139
8	Synergistic effects in silver–indium electrocatalysts for carbon dioxide reduction. Journal of Catalysis, 2016, 343, 266-277.	6.2	73
9	CuCrO ₂ Delafossite: A Stable Copper Catalyst for Chlorine Production. Angewandte Chemie - International Edition, 2013, 52, 9772-9775.	13.8	72
10	Microfabricated electrodes unravel the role of interfaces in multicomponent copper-based CO2 reduction catalysts. Nature Communications, 2018, 9, 1477.	12.8	60
11	Autohydrolysis pretreatment of softwood – enhancement by phenolic additives and the effects of other compounds. Green Chemistry, 2016, 18, 5239-5247.	9.0	47
12	Solvothermallyâ€Prepared Cu ₂ O Electrocatalysts for CO ₂ Reduction with Tunable Selectivity by the Introduction of pâ€Block Elements. ChemSusChem, 2017, 10, 1255-1265.	6.8	47
13	A Comprehensive Approach to Investigate CO ₂ Reduction Electrocatalysts at High Current Densities. Accounts of Materials Research, 2021, 2, 220-229.	11.7	46
14	Copper-indium hydroxides derived electrocatalysts with tunable compositions for electrochemical CO2 reduction. Journal of Energy Chemistry, 2021, 63, 278-284.	12.9	38
15	Investigation of Ethylene and Propylene Production from CO ₂ Reduction over Copper Nanocubes in an MEA-Type Electrolyzer. ACS Applied Materials & Interfaces, 2022, 14, 7779-7787.	8.0	22

16 Titelbild: CuCrO2Delafossite: A Stable Copper Catalyst for Chlorine Production (Angew. Chem.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 14