
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9200832/publications.pdf Version: 2024-02-01



MANUL RANSAL

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | RNA-mediated translation regulation in viral genomes: computational advances in the recognition of sequences and structures. Briefings in Bioinformatics, 2020, 21, 1151-1163.                                              | 6.5  | 5         |
| 2  | Biomolecular Structures: Prediction, Identification and Analyses. , 2019, , 504-534.                                                                                                                                        |      | 2         |
| 3  | Variation of gene expression in plants is influenced by gene architecture and structural properties of promoters. PLoS ONE, 2019, 14, e0212678.                                                                             | 2.5  | 29        |
| 4  | Identification of putative promoters in 48 eukaryotic genomes on the basis of DNA free energy.<br>Scientific Reports, 2018, 8, 4520.                                                                                        | 3.3  | 35        |
| 5  | Modulation of Gene Expression by Gene Architecture and Promoter Structure. , 2018, , .                                                                                                                                      |      | 1         |
| 6  | Flexibility and structure of flanking DNA impact transcription factor affinity for its core motif.<br>Nucleic Acids Research, 2018, 46, 11883-11897.                                                                        | 14.5 | 62        |
| 7  | Toward a Universal Structural and Energetic Model for Prokaryotic Promoters. Biophysical Journal, 2018, 115, 1180-1189.                                                                                                     | 0.5  | 7         |
| 8  | Dynamics of physiologically relevant noncanonical DNA structures: an overview from experimental and theoretical studies. Briefings in Functional Genomics, 2018, 18, 192-204.                                               | 2.7  | 2         |
| 9  | Unveiling DNA structural features of promoters associated with various types of TSSs in prokaryotic transcriptomes and their role in gene expression. DNA Research, 2017, 24, dsw045.                                       | 3.4  | 16        |
| 10 | RNAHelix: computational modeling of nucleic acid structures with Watson–Crick and non-canonical base pairs. Journal of Computer-Aided Molecular Design, 2017, 31, 219-235.                                                  | 2.9  | 8         |
| 11 | <scp>DNA</scp> structural features of eukaryotic <scp>TATA</scp> â€containing and<br><scp>TATA</scp> â€less promoters. FEBS Open Bio, 2017, 7, 324-334.                                                                     | 2.3  | 48        |
| 12 | New insight into the architecture of oxyâ€anion pocket in unliganded conformation of <scp>GAT</scp><br>domains: A <scp>MD</scp> â€simulation study. Proteins: Structure, Function and Bioinformatics, 2016,<br>84, 360-373. | 2.6  | 2         |
| 13 | Data on diverse roles of helix perturbations in membrane proteins. Data in Brief, 2016, 9, 781-802.                                                                                                                         | 1.0  | 2         |
| 14 | Insights into the Structural Dynamics of Nucleocytoplasmic Transport of tRNA by Exportin-t.<br>Biophysical Journal, 2016, 110, 1264-1279.                                                                                   | 0.5  | 5         |
| 15 | The role of sequence in altering the unfolding pathway of an RNA pseudoknot: a steered molecular<br>dynamics study. Physical Chemistry Chemical Physics, 2016, 18, 28767-28780.                                             | 2.8  | 7         |
| 16 | Genome-Wide Targets Regulated by the OsMADS1 Transcription Factor Reveals Its DNA Recognition Properties. Plant Physiology, 2016, 172, 372-388.                                                                             | 4.8  | 25        |
| 17 | Helix perturbations in membrane proteins assist in inter-helical interactions and optimal helix<br>positioning in the bilayer. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2804-2817.                         | 2.6  | 9         |
| 18 | Structural features of DNA are conserved in the promoter region of orthologous genes across different strains of <i>Helicobacter pylori</i> . FEMS Microbiology Letters, 2016, 363, fnw207.                                 | 1.8  | 9         |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Structural and functional analyses of PolyProline-II helices in globular proteins. Journal of<br>Structural Biology, 2016, 196, 414-425.                                                                                                 | 2.8 | 21        |
| 20 | Dissecting Ï€â€helices: sequence, structure and function. FEBS Journal, 2015, 282, 4415-4432.                                                                                                                                            | 4.7 | 32        |
| 21 | DNA Structure and Promoter Engineering. , 2015, , 241-254.                                                                                                                                                                               |     | 10        |
| 22 | Identification of local variations within secondary structures of proteins. Acta Crystallographica<br>Section D: Biological Crystallography, 2015, 71, 1077-1086.                                                                        | 2.5 | 22        |
| 23 | Stacking interactions in RNA and DNA: Rollâ€slide energy hyperspace for ten unique dinucleotide steps.<br>Biopolymers, 2015, 103, 134-147.                                                                                               | 2.4 | 14        |
| 24 | <i>MolBridge</i> : a program for identifying nonbonded interactions in small molecules and biomolecular structures. Journal of Applied Crystallography, 2014, 47, 1772-1776.                                                             | 4.5 | 16        |
| 25 | Role of DNA sequence based structural features of promoters in transcription initiation and gene expression. Current Opinion in Structural Biology, 2014, 25, 77-85.                                                                     | 5.7 | 81        |
| 26 | Sequence dependent variations in RNA duplex are related to non-canonical hydrogen bond interactions in dinucleotide steps. BMC Research Notes, 2014, 7, 83.                                                                              | 1.4 | 12        |
| 27 | Editorial overview: Theory and simulation: Tools for solving the insolvable. Current Opinion in<br>Structural Biology, 2014, 25, iv-v.                                                                                                   | 5.7 | 9         |
| 28 | Sequence and conformational preferences at termini of αâ€helices in membrane proteins: Role of the<br>helix environment. Proteins: Structure, Function and Bioinformatics, 2014, 82, 3420-3436.                                          | 2.6 | 5         |
| 29 | Local Structural and Environmental Factors Define the Efficiency of an RNA Pseudoknot Involved in<br>Programmed Ribosomal Frameshift Process. Journal of Physical Chemistry B, 2014, 118, 11905-11920.                                   | 2.6 | 9         |
| 30 | DNA STRUCTURAL FEATURES AND ARCHITECTURE OF PROMOTER REGIONS PLAY A ROLE IN GENE<br>RESPONSIVENESS OF <i>S. cerevisiae</i> . Journal of Bioinformatics and Computational Biology, 2013, 11,<br>1343001.                                  | 0.8 | 13        |
| 31 | HELANAL-Plus: a web server for analysis of helix geometry in protein structures. Journal of<br>Biomolecular Structure and Dynamics, 2012, 30, 773-783.                                                                                   | 3.5 | 62        |
| 32 | Characterization of structural and free energy properties of promoters associated with Primary and<br>Operon TSS in Helicobacter pylori genome and their orthologs. Journal of Biosciences, 2012, 37,<br>423-431.                        | 1.1 | 11        |
| 33 | Nucleic acids in disease and disorder: Understanding the language of life emerging from the â€~ABC' of DNA. Journal of Biosciences, 2012, 37, 375-378.                                                                                   | 1.1 | 0         |
| 34 | Intrinsic structural variability of DNA allows multiple genomic encoding for nucleosomesComment<br>on "Cracking the chromatin code: Precise rule of nucleosome positioning―by E.N. Trifonov. Physics of<br>Life Reviews, 2011, 8, 67-68. | 2.8 | 0         |
| 35 | An ensemble of B-DNA dinucleotide geometries lead to characteristic nucleosomal DNA structure and provide plasticity required for gene expression. BMC Structural Biology, 2011, 11, 1.                                                  | 2.3 | 44        |
| 36 | PromBase: a web resource for various genomic features and predicted promoters in prokaryotic genomes. BMC Research Notes, 2011, 4, 257.                                                                                                  | 1.4 | 27        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | DNA Free Energy-Based Promoter Prediction and Comparative Analysis of Arabidopsis and Rice Genomes<br>Â. Plant Physiology, 2011, 156, 1300-1315.                                                                                                                                                                                                                                                                                                                                               | 4.8  | 43        |
| 38 | High-quality annotation of promoter regions for 913 bacterial genomes. Bioinformatics, 2010, 26, 3043-3050.                                                                                                                                                                                                                                                                                                                                                                                    | 4.1  | 45        |
| 39 | Small local variations in B-form DNA lead to a large variety of global geometries which can accommodate most DNA-binding protein motifs. BMC Structural Biology, 2009, 9, 24.                                                                                                                                                                                                                                                                                                                  | 2.3  | 28        |
| 40 | Relative stability of DNA as a generic criterion for promoter prediction: whole genome annotation of microbial genomes with varying nucleotide base composition. Molecular BioSystems, 2009, 5, 1758.                                                                                                                                                                                                                                                                                          | 2.9  | 37        |
| 41 | Identification and annotation of promoter regions in microbial genome sequences on the basis of DNA stability. Journal of Biosciences, 2007, 32, 851-862.                                                                                                                                                                                                                                                                                                                                      | 1.1  | 31        |
| 42 | Conformational specificity of non-canonical base pairs and higher order structures in nucleic acids:<br>crystal structure database analysis. Journal of Computer-Aided Molecular Design, 2006, 20, 629-645.                                                                                                                                                                                                                                                                                    | 2.9  | 54        |
| 43 | Collagen Structure: The Madras Triple Helix and the Current Scenario. IUBMB Life, 2005, 57, 161-172.                                                                                                                                                                                                                                                                                                                                                                                           | 3.4  | 160       |
| 44 | A novel method for prokaryotic promoter prediction based on DNA stability. BMC Bioinformatics, 2005, 6, 1.                                                                                                                                                                                                                                                                                                                                                                                     | 2.6  | 462       |
| 45 | Structural properties of promoters: similarities and differences between prokaryotes and eukaryotes.<br>Nucleic Acids Research, 2005, 33, 3165-3175.                                                                                                                                                                                                                                                                                                                                           | 14.5 | 117       |
| 46 | Structural Insights into the Effect of Hydration and Ions on A-Tract DNA: A Molecular Dynamics<br>Study. Biophysical Journal, 2003, 85, 1805-1816.                                                                                                                                                                                                                                                                                                                                             | 0.5  | 42        |
| 47 | An assessment of three dinucleotide parameters to predict DNA curvature by quantitative comparison with experimental data. Nucleic Acids Research, 2003, 31, 2647-2658.                                                                                                                                                                                                                                                                                                                        | 14.5 | 22        |
| 48 | A Nanosecond Molecular Dynamics Study of Antiparallel d(G) <sub>7</sub> Quadruplex Structures:<br>Effect of the Coordinated Cations. Journal of Biomolecular Structure and Dynamics, 2001, 18, 647-669.                                                                                                                                                                                                                                                                                        | 3.5  | 14        |
| 49 | G-Quadruplex Structure Can Be Stable with Only Some Coordination Sites Being Occupied by Cations:Â<br>A Six-Nanosecond Molecular Dynamics Study. Journal of Physical Chemistry B, 2001, 105, 7572-7578.                                                                                                                                                                                                                                                                                        | 2.6  | 52        |
| 50 | A standard reference frame for the description of nucleic acid base-pair geometry 1 1Edited by P. E.<br>Wright 2 2This is a document of the Nomenclature Committee of IUBMB (NC-IUBMB)/IUPAC-IUBMB Joint<br>Commission on Biochemical Nomenclature (JCBN), whose members are R. Cammack (chairman), A.<br>Bairoch, H.M. Berman, S. Boyce, C.R. Cantor, K. Elliott, D. Horton, M. Kanehisa, A. Kotyk, G.P. Moss, N.<br>Sharon and K.F. Tipton Journal of Molecular Biology, 2001, 313, 229-237. | 4.2  | 533       |
| 51 | Modelling studies on neurodegenerative disease-causing triplet repeat sequences d(GGC/GCC)n and d(CAG/CTG)n. Journal of Biosciences, 2001, 26, 649-665.                                                                                                                                                                                                                                                                                                                                        | 1.1  | 7         |
| 52 | The Madras triple helix: Origins and current status. Resonance, 2001, 6, 38-47.                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3  | 2         |
| 53 | HELANAL: A Program to Characterize Helix Geometry in Proteins. Journal of Biomolecular Structure and Dynamics, 2000, 17, 811-819.                                                                                                                                                                                                                                                                                                                                                              | 3.5  | 157       |
| 54 | Effect of Coordinated Ions on Structure and Flexibility of Parallel G-quadruplexes: A Molecular<br>Dynamics Study. Journal of Biomolecular Structure and Dynamics, 2000, 17, 11-28.                                                                                                                                                                                                                                                                                                            | 3.5  | 16        |

| #  | Article                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Symposia lectures. Journal of Biosciences, 1999, 24, 5-31.                                                                                                                  | 1.1  | Ο         |
| 56 | Contributory presentations/posters. Journal of Biosciences, 1999, 24, 33-198.                                                                                               | 1.1  | 0         |
| 57 | C-HO hydrogen bonds in minor groove of A-tracts in DNA double helices. Journal of Molecular<br>Biology, 1999, 294, 1149-1158.                                               | 4.2  | 72        |
| 58 | Dissecting α-helices: Position-specific analysis of α-helices in globular proteins. Proteins: Structure,<br>Function and Bioinformatics, 1998, 31, 460-476.                 | 2.6  | 126       |
| 59 | Molecular Dynamics Simulations on Parallel and Antiparallel C.G*G Triplexes. Journal of Biomolecular Structure and Dynamics, 1998, 16, 511-526.                             | 3.5  | 1         |
| 60 | Geometrical and Sequence Characteristics of α-Helices in Globular Proteins. Biophysical Journal, 1998,<br>75, 1935-1944.                                                    | 0.5  | 102       |
| 61 | Sequence-Independent Recombination Triple Helices: A Molecular Dynamics Study. Journal of Biomolecular Structure and Dynamics, 1997, 15, 333-345.                           | 3.5  | 8         |
| 62 | Structural Polymorphism in d(T) <sub>12</sub> .d(A) <sub>12</sub> *d(T) <sub>12</sub> Triple Helices.<br>Journal of Biomolecular Structure and Dynamics, 1995, 13, 493-505. | 3.5  | 14        |
| 63 | Molecular Modeling Studies on Amphotericin B and its Complex with Phospholipid. Journal of Biomolecular Structure and Dynamics, 1995, 12, 957-970.                          | 3.5  | 17        |
| 64 | Conformational polymorphism in telomeric structures: Loop orientation and interloop pairing in d(G4TnG4). Biopolymers, 1994, 34, 1187-1211.                                 | 2.4  | 23        |
| 65 | Conformational polymorphism in G-tetraplex structures: strand reversal by base flipover or sugar flipover. Nucleic Acids Research, 1993, 21, 1767-1774.                     | 14.5 | 35        |
| 66 | Groove Width and Depth of B-DNA Structures Depend on Local Variation in Slide. Journal of Biomolecular Structure and Dynamics, 1992, 10, 213-226.                           | 3.5  | 39        |
| 67 | DNA Polymorphism and Local Variation in Base-Pair Orientation: A Theoretical Rationale. Journal of Biomolecular Structure and Dynamics, 1991, 9, 127-142.                   | 3.5  | 12        |
| 68 | Local Variability and Base Sequence Effects in DNA Crystal Structures. Journal of Biomolecular<br>Structure and Dynamics, 1990, 8, 539-572.                                 | 3.5  | 55        |
| 69 | A Self-Consistent Formulation for Analysis and Generation of Non-Uniform DNA Structures. Journal of Biomolecular Structure and Dynamics, 1989, 6, 635-653.                  | 3.5  | 45        |
| 70 | Molecular mechanics studies on poly(purine) · poly(pyrimidine) sequences in DNA: Polymorphism and<br>local variability. Biopolymers, 1989, 28, 531-548.                     | 2.4  | 4         |
| 71 | Energetics of Left and Right Handed Models of DNA. Journal of Biomolecular Structure and Dynamics, 1987, 4, 1027-1040.                                                      | 3.5  | 2         |
| 72 | Sequence-dependent molecular conformation of polynucleotides: right and left-handed helices.<br>International Journal of Biological Macromolecules, 1981, 3, 2-8.           | 7.5  | 14        |

| #  | Article                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Structure factor calculations of various DNA duplexes. International Journal of Quantum Chemistry, 1981, 20, 407-417.                       | 2.0 | 6         |
| 74 | ROLE OF NONâ€PLANAR PEPTIDE UNIT IN REGULAR POLYPEPTIDE HELICES:. International Journal of Peptide and Protein Research, 1981, 18, 374-382. | 0.1 | 7         |