
Hao-Wu Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9200197/publications.pdf Version: 2024-02-01

ΗλΟ-λλητιτικ

#	Article	IF	CITATIONS
1	All-Vacuum-Deposited Perovskite X-ray Detector with a Record-High Self-Powered Sensitivity of 1.2 C Gy ^{–1} cm ^{–3} . ACS Applied Materials & Interfaces, 2022, 14, 19795-19805.	8.0	17
2	Room-Temperature Fabricated Multilevel Nonvolatile Lead-Free Cesium Halide Memristors for Reconfigurable In-Memory Computing. ACS Nano, 2022, 16, 12979-12990.	14.6	16
3	Transparent and Flexible Inorganic Perovskite Photonic Artificial Synapses with Dualâ€Mode Operation. Advanced Functional Materials, 2021, 31, 2008259.	14.9	83
4	Multiâ€Channel Pumped Ultrasonic Sprayâ€Coating for Highâ€Throughput and Scalable Mixed Halide Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 2001509.	3.7	13
5	Highly Uniform Allâ€Vacuumâ€Deposited Inorganic Perovskite Artificial Synapses for Reservoir Computing. Advanced Intelligent Systems, 2021, 3, 2000196.	6.1	18
6	Synergistic improvements in the performance and stability of inverted planar MAPbl ₃ -based perovskite solar cells incorporating benzylammonium halide salt additives. Materials Chemistry Frontiers, 2021, 5, 3378-3387.	5.9	18
7	CH ₃ NH ₃ Pb _{1–<i>x</i>} Co <i>_x</i> Br _{3–2<i>x</i><td>sub>Cl<si 5.0</si </td><td>ub>2<i>x17</i></td>}	sub>Cl <si 5.0</si 	ub>2 <i>x17</i>
8	Very Robust Spray-Synthesized CsPbl ₃ Quantum Emitters with Ultrahigh Room-Temperature Cavity-Free Brightness and Self-Healing Ability. ACS Nano, 2021, 15, 11358-11368.	14.6	15
9	Ultrasonic Sprayâ€Coatings: Multiâ€Channel Pumped Ultrasonic Sprayâ€Coating for Highâ€Throughput and Scalable Mixed Halide Perovskite Solar Cells (Adv. Mater. Interfaces 5/2021). Advanced Materials Interfaces, 2021, 8, 2170023.	3.7	1
10	Organic Lead Halide Nanocrystals Providing an Ultra-Wide Color Gamut with Almost-Unity Photoluminescence Quantum Yield. ACS Applied Materials & Interfaces, 2021, 13, 25202-25213.	8.0	11
11	Panchromatic heterojunction solar cells for Pb-free all-inorganic antimony based perovskite. Chemical Engineering Journal, 2021, 419, 129424.	12.7	46
12	Small Molecules with Controllable Molecular Weights Passivate Surface Defects in Airâ€Stable pâ€iâ€n Perovskite Solar Cells. Advanced Electronic Materials, 2021, 7, 2000870.	5.1	18
13	Boron Carbon Oxynitride as a Novel Metal-Free Photocatalyst. Nanoscale Research Letters, 2021, 16, 176.	5.7	10
14	Packing-Shape Effects of Optical Properties in Amplified Spontaneous Emission through Dynamics of Orbit–Orbit Polarization Interaction in Hybrid Perovskite Quantum Dots Based on Self-Assembly. Journal of Physical Chemistry Letters, 2021, 12, 11894-11901.	4.6	3
15	Forming a Metal-Free Oxidatively Coupled Agent, Bicarbazole, as a Defect Passivation for HTM and an Interfacial Layer in a p–i–n Perovskite Solar Cell Exhibits Nearly 20% Efficiency. Chemistry of Materials, 2020, 32, 127-138.	6.7	22
16	Triphenylamine dibenzofulvene–derived dopantâ€free hole transporting layer induces micrometerâ€sized perovskite grains for highly efficient near 20% for pâ€iâ€n perovskite solar cells. Progress in Photovoltaics: Research and Applications, 2020, 28, 49-59.	8.1	24
17	Thermal and angular dependence of nextâ€generation photovoltaics under indoor lighting. Progress in Photovoltaics: Research and Applications, 2020, 28, 111-121.	8.1	13
18	Perovskite Photosensors Integrated with Silver Resonant avity Color Filters Display Color Perception Beyond That of the Human Eye. Advanced Functional Materials, 2020, 30, 2002503.	14.9	19

Hao-Wu Lin

#	Article	IF	CITATIONS
19	Perovskite Quantum Dot Lasing in a Gap-Plasmon Nanocavity with Ultralow Threshold. ACS Nano, 2020, 14, 11670-11676.	14.6	71
20	Recent Progress on Advanced Optical Structures for Emerging Photovoltaics and Photodetectors. Advanced Energy and Sustainability Research, 2020, 1, 2000035.	5.8	11
21	Commercially available jeffamine additives for p–i–n perovskite solar cells. Nanotechnology, 2020, 31, 274002.	2.6	7
22	Enhancing Quantum Yield in Strained MoS ₂ Bilayers by Morphology-Controlled Plasmonic Nanostructures toward Superior Photodetectors. Chemistry of Materials, 2020, 32, 2242-2252.	6.7	24
23	Efficient Cesium Lead Halide Perovskite Solar Cells through Alternative Thousandâ€Layer Rapid Deposition. Advanced Functional Materials, 2019, 29, 1905163.	14.9	30
24	Defect Passivation by Amide-Based Hole-Transporting Interfacial Layer Enhanced Perovskite Grain Growth for Efficient p–i–n Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 40050-40061.	8.0	46
25	Vacuum Fabrication: Efficient Cesium Lead Halide Perovskite Solar Cells through Alternative Thousand‣ayer Rapid Deposition (Adv. Funct. Mater. 44/2019). Advanced Functional Materials, 2019, 29, 1970303.	14.9	1
26	Photovoltaic Performance Enhancement of Perovskite Solar Cells Using Polyimide and Polyamic Acid as Additives. Journal of Physical Chemistry C, 2019, 123, 23826-23833.	3.1	17
27	Vacuum-deposited perovskite photovoltaics for highly efficient environmental light energy harvesting. Journal of Materials Chemistry A, 2019, 7, 3612-3617.	10.3	29
28	Perovskite Photoreceptors: Band Tunable Microcavity Perovskite Artificial Human Photoreceptors (Adv. Mater. 24/2019). Advanced Materials, 2019, 31, 1970170.	21.0	6
29	Pyridine-Carbonitrile–Carbazole-Based Delayed Fluorescence Materials with Highly Congested Structures and Excellent OLED Performance. ACS Applied Materials & Interfaces, 2019, 11, 21042-21048.	8.0	40
30	Band Tunable Microcavity Perovskite Artificial Human Photoreceptors. Advanced Materials, 2019, 31, e1900231.	21.0	52
31	Multi-photon properties in various condensed phases of dendritic chromophores derived from carbazole and indenoquioxaline units: Synthesis and characterization. Dyes and Pigments, 2019, 168, 140-150.	3.7	2
32	High-Quality Conformal Homogeneous All-Vacuum Deposited CsPbCl ₃ Thin Films and Their UV Photodiode Applications. ACS Applied Materials & Interfaces, 2019, 11, 47054-47062.	8.0	40
33	Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off. Nature Photonics, 2018, 12, 235-240.	31.4	669
34	Quantum Dots: Perovskite Quantum Dots with Near Unity Solution and Neatâ€Film Photoluminescent Quantum Yield by Novel Spray Synthesis (Adv. Mater. 7/2018). Advanced Materials, 2018, 30, 1870048.	21.0	6
35	Perovskite Quantum Dots with Near Unity Solution and Neatâ€Film Photoluminescent Quantum Yield by Novel Spray Synthesis. Advanced Materials, 2018, 30, 1705532.	21.0	84
36	Perovskite Solar Cells: Carbon Nanodot Additives Realize Highâ€Performance Airâ€Stable p–i–n Perovskite Solar Cells Providing Efficiencies of up to 20.2% (Adv. Energy Mater. 34/2018). Advanced Energy Materials, 2018, 8, 1870147.	19.5	3

#	Article	IF	CITATIONS
37	Carbon Nanodot Additives Realize Highâ€Performance Airâ€Stable p–i–n Perovskite Solar Cells Providing Efficiencies of up to 20.2%. Advanced Energy Materials, 2018, 8, 1802323.	19.5	86
38	Top Illuminated Hysteresis-Free Perovskite Solar Cells Incorporating Microcavity Structures on Metal Electrodes: A Combined Experimental and Theoretical Approach. ACS Applied Materials & Interfaces, 2018, 10, 17973-17984.	8.0	31
39	Pressure Welding of Silver Nanowires Networks at Room Temperature as Transparent Electrodes for Efficient Organic Lightâ€Emitting Diodes. Small, 2018, 14, e1800541.	10.0	54
40	Allâ€Vacuumâ€Deposited Stoichiometrically Balanced Inorganic Cesium Lead Halide Perovskite Solar Cells with Stabilized Efficiency Exceeding 11%. Advanced Materials, 2017, 29, 1605290.	21.0	321
41	Molecular Design of Highly Efficient Thermally Activated Delayed Fluorescence Hosts for Blue Phosphorescent and Fluorescent Organic Light-Emitting Diodes. Chemistry of Materials, 2017, 29, 1527-1537.	6.7	85
42	Thermally activated delayed fluorescence emitters with a m,m-di-tert-butyl-carbazolyl benzoylpyridine core achieving extremely high blue electroluminescence efficiencies. Journal of Materials Chemistry C, 2017, 5, 2919-2926.	5.5	48
43	Binary halide, ternary perovskite-like, and perovskite-derivative nanostructures: hot injection synthesis and optical and photocatalytic properties. Nanoscale, 2017, 9, 3747-3751.	5.6	24
44	Boosting thin-film perovskite solar cell efficiency through vacuum-deposited sub-nanometer small-molecule electron interfacial layers. Nano Energy, 2017, 38, 66-71.	16.0	34
45	Performance Characterization of Dye-Sensitized Photovoltaics under Indoor Lighting. Journal of Physical Chemistry Letters, 2017, 8, 1824-1830.	4.6	51
46	Orthogonally weaved silver nanowire networks for very efficient organic optoelectronic devices. Organic Electronics, 2017, 43, 15-20.	2.6	20
47	Vacuum-Deposited Organometallic Halide Perovskite Light-Emitting Devices. ACS Applied Materials & Interfaces, 2017, 9, 40516-40522.	8.0	26
48	Very high hole drift mobility in neat and doped molecular thin films for normal and inverted perovskite solar cells. Nano Energy, 2017, 41, 681-686.	16.0	14
49	New Molecular Design Concurrently Providing Superior Pure Blue, Thermally Activated Delayed Fluorescence and Optical Out-Coupling Efficiencies. Journal of the American Chemical Society, 2017, 139, 10948-10951.	13.7	361
50	Bifacial Perovskite Solar Cells Featuring Semitransparent Electrodes. ACS Applied Materials & Interfaces, 2017, 9, 32635-32642.	8.0	49
51	Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance. Nature Photonics, 2017, 11, 63-68.	31.4	494
52	Slow Organicâ€toâ€Inorganic Subâ€Lattice Thermalization in Methylammonium Lead Halide Perovskites Observed by Ultrafast Photoluminescence. Advanced Energy Materials, 2016, 6, 1600422.	19.5	32
53	Superior upconversion fluorescence dopants for highly efficient deep-blue electroluminescent devices. Chemical Science, 2016, 7, 4044-4051.	7.4	76
54	A Method for Reducing the Singlet–Triplet Energy Gaps of TADF Materials for Improving the Blue OLED Efficiency. ACS Applied Materials & Interfaces, 2016, 8, 27026-27034.	8.0	87

#	Article	IF	CITATIONS
55	Efficient Allâ€Vacuum Deposited Perovskite Solar Cells by Controlling Reagent Partial Pressure in High Vacuum. Advanced Materials, 2016, 28, 7013-7019.	21.0	143
56	Cofacial Versus Coplanar Arrangement in Centrosymmetric Packing Dimers of Dipolar Small Molecules: Structural Effects on the Crystallization Behaviors and Optoelectronic Characteristics. ACS Applied Materials & Interfaces, 2016, 8, 18266-18276.	8.0	11
57	A–D–A type organic donors employing coplanar heterocyclic cores for efficient small molecule organic solar cells. Organic Electronics, 2016, 28, 229-238.	2.6	21
58	A thermally activated delayed blue fluorescent emitter with reversible externally tunable emission. Journal of Materials Chemistry C, 2016, 4, 900-904.	5.5	52
59	Blade coating of Tris(8-hydroxyquinolinato)aluminum as the electron-transport layer for all-solution blue fluorescent organic light-emitting diodes. Organic Electronics, 2016, 29, 99-106.	2.6	18
60	A New Molecular Design Based on Thermally Activated Delayed Fluorescence for Highly Efficient Organic Light Emitting Diodes. Journal of the American Chemical Society, 2016, 138, 628-634.	13.7	365
61	Insight into Evolution, Processing and Performance of Multi-length-scale Structures in Planar Heterojunction Perovskite Solar Cells. Scientific Reports, 2015, 5, 13657.	3.3	37
62	Perovskite Photovoltaics for Dim‣ight Applications. Advanced Functional Materials, 2015, 25, 7064-7070.	14.9	153
63	A high efficiency UV-VIS organic photodetector by an invertedPTB7: PC71BM bulk heterojunction structure. , 2015, , .		0
64	Tunable chromaticity stability in solution-processed organic light emitting devices. Organic Electronics, 2015, 20, 36-42.	2.6	7
65	Solution-processed organic light-emitting diodes with a power efficacy exceeding 100lm/W using multiple light extraction approaches. Solid-State Electronics, 2015, 105, 58-62.	1.4	1
66	A solution-processed molybdenum oxide treated silver nanowire network: a highly conductive transparent conducting electrode with superior mechanical and hole injection properties. Nanoscale, 2015, 7, 4572-4579.	5.6	68
67	Performance enhancement of metal nanowire-based transparent electrodes by electrically driven nanoscale nucleation of metal oxides. Nanoscale, 2015, 7, 12698-12705.	5.6	24
68	Efficient solution-processed green and white phosphorescence organic light-emitting diodes based on bipolar host materials. Organic Electronics, 2015, 17, 1-8.	2.6	30
69	Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells. Journal of Materials Chemistry A, 2015, 3, 9152-9159.	10.3	240
70	High-efficiency polymer solar cells by blade coating in chlorine-free solvents. Organic Electronics, 2014, 15, 893-903.	2.6	51
71	Highly efficient organic solar cells using a solution-processed active layer with a small molecule donor and pristine fullerene. Journal of Materials Chemistry A, 2014, 2, 3709-3714.	10.3	31

⁷² Organic Solar Cells: Microcavity-Embedded, Colour-Tuneable, Transparent Organic Solar Cells (Adv.) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 5

#	Article	IF	CITATIONS
73	Single-emission-layer white organic light-emitting devices: Chromaticity and colour-rendering consideration. Organic Electronics, 2014, 15, 517-523.	2.6	17
74	ITO-free inverted polymer solar cell on metal substrate with top-illumination. Synthetic Metals, 2014, 187, 172-177.	3.9	4
75	Geometrical Isomerism of Ru ^{II} Dyeâ€Sensitized Solar Cell Sensitizers and Effects on Photophysical Properties and Device Performances. ChemPhysChem, 2014, 15, 1207-1215.	2.1	11
76	Efficient inverted quasi-bilayer organic solar cells fabricated by using non-halogenated solvent processes. Journal of Materials Chemistry A, 2014, 2, 13398-13406.	10.3	39
77	Photovoltaic performance of novel push–pull–push thienyl–Bodipy dyes in solution-processed BHJ-solar cells. New Journal of Chemistry, 2014, 38, 1701-1710.	2.8	29
78	Spontaneous formation of light-trapping nano-structures for top-illumination organic solar cells. Nanoscale, 2014, 6, 2316.	5.6	14
79	Morphology, molecular stacking, dynamics and device performance correlations of vacuum-deposited small-molecule organic solar cells. Physical Chemistry Chemical Physics, 2014, 16, 8852-8864.	2.8	23
80	Benzochalcogenodiazoleâ€Based Donor–Acceptor–Acceptor Molecular Donors for Organic Solar Cells. ChemSusChem, 2014, 7, 457-465.	6.8	34
81	Efficient delayed fluorescence via triplet–triplet annihilation for deep-blue electroluminescence. Chemical Communications, 2014, 50, 6869-6871.	4.1	104
82	New Molecular Donors with Dithienopyrrole as the Electron-Donating Group for Efficient Small-Molecule Organic Solar Cells. Chemistry of Materials, 2014, 26, 4361-4367.	6.7	54
83	Efficient and Uniform Planarâ€Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition. Advanced Materials, 2014, 26, 6647-6652.	21.0	433
84	General application of blade coating to small-molecule hosts for organic light-emitting diode. Synthetic Metals, 2014, 196, 99-109.	3.9	15
85	Multilayer rapid-drying blade coating for organic solar cells by low boiling point solvents. Japanese Journal of Applied Physics, 2014, 53, 062301.	1.5	7
86	Structure–Performance Correlations of Organic Dyes with an Electronâ€Đeficient Diphenylquinoxaline Moiety for Dye‧ensitized Solar Cells. Chemistry - A European Journal, 2014, 20, 10052-10064.	3.3	33
87	Two-step thermal annealing improves the morphology of spin-coated films for highly efficient perovskite hybrid photovoltaics. Nanoscale, 2014, 6, 10281-10288.	5.6	105
88	Microcavityâ€Embedded, Colourâ€Tuneable, Transparent Organic Solar Cells. Advanced Materials, 2014, 26, 1129-1134.	21.0	95
89	Vacuum-deposited interconnection layers for tandem solar cells. Organic Electronics, 2014, 15, 1828-1835.	2.6	15
90	Design of Os ^{II} â€based Sensitizers for Dyeâ€6ensitized Solar Cells: Influence of Heterocyclic Ancillaries. ChemSusChem, 2013, 6, 1366-1375.	6.8	17

#	Article	IF	CITATIONS
91	A bipolar host containing carbazole/dibenzothiophene for efficient solution-processed blue and white phosphorescent OLEDs. Journal of Materials Chemistry C, 2013, 1, 6835.	5.5	47
92	Photophysical studies on D–í€â€"A dye-sensitized solar cells: Effects of í€-bridge and hexyloxy side chains in donor moieties. Organic Electronics, 2013, 14, 1037-1044.	2.6	10
93	Pyridine-based electron transporting materials for highly efficient organic solar cells. Journal of Materials Chemistry A, 2013, 1, 1770-1777.	10.3	39
94	Solution-processed hexaazatriphenylene hexacarbonitrile as a universal hole-injection layer for organic light-emitting diodes. Organic Electronics, 2013, 14, 1204-1210.	2.6	44
95	Charge Carrier Dynamics of Vapor-Deposited Small-Molecule/Fullerene Organic Solar Cells. Journal of the American Chemical Society, 2013, 135, 8790-8793.	13.7	27
96	Continuously tunable organic solid-state DFB laser utilizing molecular reorientation in molecular glasses. Organic Electronics, 2013, 14, 2540-2545.	2.6	7
97	Interface and thickness tuning for blade coated small-molecule organic light-emitting diodes with high power efficiency. Journal of Applied Physics, 2013, 114, 123101.	2.5	11
98	Origins of device performance in dicarboxyterpyridine Ru(ii) dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 14190.	2.8	24
99	Unmodified small-molecule organic light-emitting diodes by blade coating. Organic Electronics, 2012, 13, 2149-2155.	2.6	35
100	Highly efficient bifacial transparent organic solar cells with power conversion efficiency greater than 3% and transparency of 50%. Organic Electronics, 2012, 13, 1722-1728.	2.6	35
101	An effective bilayer cathode buffer for highly efficient small molecule organic solar cells. Organic Electronics, 2012, 13, 1925-1929.	2.6	32
102	Organic Light-Emitting Diodes: Os(II) Based Green to Red Phosphors: A Great Prospect for Solution-Processed, Highly Efficient Organic Light-Emitting Diodes (Adv. Funct. Mater. 16/2012). Advanced Functional Materials, 2012, 22, 3318-3318.	14.9	1
103	A donor–acceptor–acceptor molecule for vacuum-processed organic solar cells with a power conversion efficiency of 6.4%. Chemical Communications, 2012, 48, 1857-1859.	4.1	155
104	Vacuum-Deposited Small-Molecule Organic Solar Cells with High Power Conversion Efficiencies by Judicious Molecular Design and Device Optimization. Journal of the American Chemical Society, 2012, 134, 13616-13623.	13.7	260
105	BODIPY dyes with \hat{l}^2 -conjugation and their applications for high-efficiency inverted small molecule solar cells. Chemical Communications, 2012, 48, 8913.	4.1	94
106	Os(II) Based Green to Red Phosphors: A Great Prospect for Solutionâ€Processed, Highly Efficient Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2012, 22, 3491-3499.	14.9	96
107	Device Engineering for Highly Efficient Topâ€Illuminated Organic Solar Cells with Microcavity Structures. Advanced Materials, 2012, 24, 2269-2272.	21.0	88
108	Microcavity Structures: Device Engineering for Highly Efficient Top-Illuminated Organic Solar Cells with Microcavity Structures (Adv. Mater. 17/2012). Advanced Materials, 2012, 24, 2268-2268.	21.0	1

#	Article	IF	CITATIONS
109	Novel oxygen sensor based on terfluorene thin-film and its enhanced sensitivity by stimulated emission. Journal of Materials Chemistry, 2012, 22, 13446.	6.7	9
110	Vacuum-free lamination of low work function cathode for efficient solution-processed organic light-emitting diodes. Organic Electronics, 2012, 13, 388-393.	2.6	17
111	Highly efficient inverted rapid-drying blade-coated organic solar cells. Organic Electronics, 2012, 13, 705-709.	2.6	29
112	All-small-molecule efficient white organic light-emitting diodes by multi-layer blade coating. Organic Electronics, 2012, 13, 914-918.	2.6	55
113	A new donor–acceptor molecule with uniaxial anisotropy for efficient vacuum-deposited organic solar cells. Chemical Communications, 2011, 47, 7872.	4.1	46
114	Continuous blade coating for multi-layer large-area organic light-emitting diode and solar cell. Journal of Applied Physics, 2011, 110, .	2.5	70
115	New A-A-D-A-A-Type Electron Donors for Small Molecule Organic Solar Cells. Organic Letters, 2011, 13, 4962-4965.	4.6	68
116	A Low-Energy-Gap Organic Dye for High-Performance Small-Molecule Organic Solar Cells. Journal of the American Chemical Society, 2011, 133, 15822-15825.	13.7	230
117	Organic Dyes Containing Coplanar Diphenyl-Substituted Dithienosilole Core for Efficient Dye-Sensitized Solar Cells. Journal of Organic Chemistry, 2010, 75, 4778-4785.	3.2	198
118	Utilizing surface plasmon polariton mediated energy transfer for tunable double-emitting organic light-emitting devices. Organic Electronics, 2010, 11, 397-406.	2.6	29
119	Characterizing coherence lengths of organic light-emitting devices using Newton's rings apparatus. Organic Electronics, 2010, 11, 439-444.	2.6	15
120	Enhancing color gamut of white OLED displays by using microcavity green pixels. Organic Electronics, 2010, 11, 247-254.	2.6	103
121	Solid-state light-emitting electrochemical cells employing phosphor-sensitized fluorescence. Journal of Materials Chemistry, 2010, 20, 5521.	6.7	43
122	Triphenylsilyl- and Trityl-Substituted Carbazole-Based Host Materials for Blue Electrophosphorescence. ACS Applied Materials & Interfaces, 2009, 1, 567-574.	8.0	112
123	SIMS and Raman studies of Mgâ€doped InN. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1648-1651.	0.8	7
124	Intense terahertz emission from a-plane InN surface. Applied Physics Letters, 2008, 92, .	3.3	43
125	Optical processes of organic emitters in optical microcavity. Proceedings of SPIE, 2007, , .	0.8	0

Low-threshold deep-blue organic thin-film distributed feedback laser. , 2007, , .

0

#	ARTICLE	IF	CITATIONS
127	Experimental and theoretical studies of lattice dynamics of Mg-doped InN. Applied Physics Letters, 2007, 91, 111917.	3.3	12
128	Tunable organic solid-state DFB laser utilizing molecular reorientation. , 2007, , .		5
129	Influences of molecular orientations on stimulated emission characteristics of oligofluorene films. Organic Electronics, 2007, 8, 189-197.	2.6	55
130	Unusual photoluminescence properties of vertically aligned InN nanorods grown by plasma-assisted molecular-beam epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 2465-2468.	0.8	0
131	Highly efficient blue phosphorescent OLEDs using large bandgap host materials. , 2006, 6192, 301.		0
132	11.4: Highly Efficient Blue Organic Electrophosphorescent Devices Based on 3,6-Bis(triphenylsilyl)Carbazole as the Host Material. Digest of Technical Papers SID International Symposium, 2006, 37, 139.	0.3	1
133	Highly Efficient Organic Blue Electrophosphorescent Devices Based on 3,6-Bis(triphenylsilyl)carbazole as the Host Material. Advanced Materials, 2006, 18, 1216-1220.	21.0	460
134	Electromagnetic Modeling of OLEDs and its Applications to High-cd/A OLEDs. , 2006, , .		1
135	Highly Efficient Visible-Blind Organic Ultraviolet Photodetectors. Advanced Materials, 2005, 17, 2489-2493.	21.0	126
136	Direct evidence of 8:9 commensurate heterojunction formed between InN and AlN on c plane. Applied Physics Letters, 2005, 87, 241916.	3.3	34
137	Examining microcavity organic light-emitting devices having two metal mirrors. Applied Physics Letters, 2005, 87, 021101.	3.3	153
138	Tuning stimulated emission of organic thin films by molecular reorientation. Applied Physics Letters, 2005, 87, 071910.	3.3	11
139	Spiroconjugation-enhanced intermolecular charge transport. Applied Physics Letters, 2005, 87, 052103.	3.3	49
140	Anisotropic optical properties and molecular orientation in vacuum-deposited ter(9,9-diarylfluorene)s thin films using spectroscopic ellipsometry. Journal of Applied Physics, 2004, 95, 881-886.	2.5	151