James Elder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9199452/publications.pdf

Version: 2024-02-01

101	9,817	43	95
papers	citations	h-index	g-index
105	105	105	13751 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nature Genetics, 2012, 44, 1341-1348.	21.4	848
2	Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nature Genetics, 2016, 48, 510-518.	21.4	617
3	Psoriasis. Nature Reviews Disease Primers, 2016, 2, 16082.	30.5	585
4	Overexpression of Transforming Growth Factor α in Psoriatic Epidermis. Science, 1989, 243, 811-814.	12.6	541
5	Sequence and Haplotype Analysis Supports HLA-C as the Psoriasis Susceptibility 1 Gene. American Journal of Human Genetics, 2006, 78, 827-851.	6.2	529
6	Evidence for two psoriasis susceptibility loci (HLA and 17q) and two novel candidate regions (16q and) Tj ETQq0	0 <u>9 rg</u> BT /	Overlock 10 7
7	Transcriptome Analysis of Psoriasis in a Large Case–Control Sample: RNA-Seq Provides Insights into Disease Mechanisms. Journal of Investigative Dermatology, 2014, 134, 1828-1838.	0.7	318
8	Combined Analysis of Genome-wide Association Studies for Crohn Disease and Psoriasis Identifies Seven Shared Susceptibility Loci. American Journal of Human Genetics, 2012, 90, 636-647.	6.2	290
9	Psoriasis: epidemiology. Clinics in Dermatology, 2007, 25, 535-546.	1.6	285
10	Atopic Dermatitis Is an IL-13–Dominant Disease with Greater Molecular Heterogeneity Compared to Psoriasis. Journal of Investigative Dermatology, 2019, 139, 1480-1489.	0.7	283
11	Molecular Dissection of Psoriasis: Integrating Genetics and Biology. Journal of Investigative Dermatology, 2010, 130, 1213-1226.	0.7	253
12	Large scale meta-analysis characterizes genetic architecture for common psoriasis associated variants. Nature Communications, 2017, 8, 15382.	12.8	251
13	Genome-wide Association Analysis of Psoriatic Arthritis and Cutaneous Psoriasis Reveals Differences in Their Genetic Architecture. American Journal of Human Genetics, 2015, 97, 816-836.	6.2	245
14	Analysis of long non-coding RNAs highlights tissue-specific expression patterns and epigenetic profiles in normal and psoriatic skin. Genome Biology, 2015, 16, 24.	8.8	204
15	Visualizing Human Leukocyte Antigen Class II Risk Haplotypes in Human Systemic Lupus Erythematosus. American Journal of Human Genetics, 2002, 71, 543-553.	6.2	197
16	Fine Mapping Major Histocompatibility Complex Associations in Psoriasis and Its Clinical Subtypes. American Journal of Human Genetics, 2014, 95, 162-172.	6.2	182
17	Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nature Genetics, 2015, 47, 1085-1090.	21.4	164
18	Genome-wide Comparative Analysis of Atopic Dermatitis and Psoriasis Gives Insight into Opposing Genetic Mechanisms. American Journal of Human Genetics, 2015, 96, 104-120.	6.2	163

#	Article	IF	CITATIONS
19	Photosensitivity and type I IFN responses in cutaneous lupus are driven by epidermal-derived interferon kappa. Annals of the Rheumatic Diseases, 2018, 77, 1653-1664.	0.9	162
20	Genetic correlations among psychiatric and immuneâ€related phenotypes based on genomeâ€wide association data. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 177, 641-657.	1.7	158
21	Enhanced meta-analysis and replication studies identify five new psoriasis susceptibility loci. Nature Communications, 2015, 6, 7001.	12.8	156
22	Global Gene Expression Analysis Reveals Evidence for Decreased Lipid Biosynthesis and Increased Innate Immunity in Uninvolved Psoriatic Skin. Journal of Investigative Dermatology, 2009, 129, 2795-2804.	0.7	153
23	Investigating the Causal Relationship of C-Reactive Protein with 32 Complex Somatic and Psychiatric Outcomes: A Large-Scale Cross-Consortium Mendelian Randomization Study. PLoS Medicine, 2016, 13, e1001976.	8.4	150
24	Evidence of a causal relationship between body mass index and psoriasis: A mendelian randomization study. PLoS Medicine, 2019, 16, e1002739.	8.4	144
25	Multiple Loci within the Major Histocompatibility Complex Confer Risk of Psoriasis. PLoS Genetics, 2009, 5, e1000606.	3.5	141
26	Genome-wide association scan yields new insights into the immunopathogenesis of psoriasis. Genes and Immunity, 2009, 10, 201-209.	4.1	134
27	Identification of Functional and Expression Polymorphisms Associated With Risk for Antineutrophil Cytoplasmic Autoantibody–Associated Vasculitis. Arthritis and Rheumatology, 2017, 69, 1054-1066.	5.6	130
28	EGF receptor signaling inhibits keratinocyte apoptosis: evidence for mediation by Bcl-XL. Oncogene, 1998, 16, 1493-1499.	5.9	107
29	A gene network regulated by the transcription factor VGLL3 as a promoter of sex-biased autoimmune diseases. Nature Immunology, 2017, 18, 152-160.	14.5	98
30	Genetic signature to provide robust risk assessment of psoriatic arthritis development in psoriasis patients. Nature Communications, 2018, 9, 4178.	12.8	95
31	Proteogenomic analysis of psoriasis reveals discordant and concordant changes in mRNA and protein abundance. Genome Medicine, 2015, 7, 86.	8.2	80
32	IFN- \hat{I}^3 and TNF- \hat{I}^\pm synergism may provide a link between psoriasis and inflammatory atherogenesis. Scientific Reports, 2017, 7, 13831.	3.3	78
33	Evidence for local control of gene expression in the epidermal differentiation complex. Experimental Dermatology, 2002, 11, 406-412.	2.9	73
34	A high-resolution HLA reference panel capturing global population diversity enables multi-ancestry fine-mapping in HIV host response. Nature Genetics, 2021, 53, 1504-1516.	21.4	69
35	miR-146b Probably Assists miRNA-146a inÂthe Suppression of Keratinocyte Proliferation and Inflammatory ResponsesÂin Psoriasis. Journal of Investigative Dermatology, 2017, 137, 1945-1954.	0.7	68
36	Association of CLEC16A with human common variable immunodeficiency disorder and role in murine B cells. Nature Communications, 2015, 6, 6804.	12.8	63

#	Article	IF	CITATIONS
37	Psoriasis and Cardiometabolic Traits: Modest Association but Distinct Genetic Architectures. Journal of Investigative Dermatology, 2015, 135, 1283-1293.	0.7	56
38	Neutrophil Extracellular Traps Induce HumanÂTh17 Cells: Effect of Psoriasis-Associated TRAF3IP2 Genotype. Journal of Investigative Dermatology, 2019, 139, 1245-1253.	0.7	54
39	Recent Highlights in Psoriasis Research. Journal of Investigative Dermatology, 2017, 137, 550-556.	0.7	53
40	Psoriasis-Associated Late Cornified Envelope (LCE) Proteins Have AntibacterialÂActivity. Journal of Investigative Dermatology, 2017, 137, 2380-2388.	0.7	53
41	Machine learning workflow to enhance predictions of Adverse Drug Reactions (ADRs) through drug-gene interactions: application to drugs for cutaneous diseases. Scientific Reports, 2017, 7, 3690.	3.3	53
42	Association of \hat{l}^2 -Defensin Copy Number and Psoriasis in Three Cohorts of European Origin. Journal of Investigative Dermatology, 2012, 132, 2407-2413.	0.7	50
43	Drug Repurposing Prediction for Immune-Mediated Cutaneous Diseases using a Word-Embedding–Based Machine Learning Approach. Journal of Investigative Dermatology, 2019, 139, 683-691.	0.7	48
44	The genetics of psoriasis. Archives of Dermatology, 1994, 130, 216-24.	1.4	48
45	Associations between COVID-19 and skin conditions identified through epidemiology and genomic studies. Journal of Allergy and Clinical Immunology, 2021, 147, 857-869.e7.	2.9	45
46	Cellular dissection of psoriasis for transcriptome analyses and the post-GWAS era. BMC Medical Genomics, 2014, 7, 27.	1.5	43
47	Sebaceous Gland Atrophy in Psoriasis: AnÂExplanation for Psoriatic Alopecia?. Journal of Investigative Dermatology, 2016, 136, 1792-1800.	0.7	42
48	Systemic evaluation of the relationship between psoriasis, psoriatic arthritis and osteoporosis: observational and Mendelian randomisation study. Annals of the Rheumatic Diseases, 2020, 79, 1460-1467.	0.9	41
49	Psoriasis drug development and GWAS interpretation through <i>in silico</i> analysis of transcription factor binding sites. Clinical and Translational Medicine, 2015, 4, 13.	4.0	40
50	Regulation of TGF-? expression in human keratinocytes: PKC-dependent and -independent pathways. Journal of Cellular Physiology, 1992, 151, 326-336.	4.1	39
51	Integrative RNA-seq and microarray data analysis reveals GC content and gene length biases in the psoriasis transcriptome. Physiological Genomics, 2014, 46, 533-546.	2.3	38
52	Endogenous Glucocorticoid Deficiency in Psoriasis Promotes Inflammation and Abnormal Differentiation. Journal of Investigative Dermatology, 2017, 137, 1474-1483.	0.7	38
53	RNA-seq identifies a diminished differentiation gene signature in primary monolayer keratinocytes grown from lesional and uninvolved psoriatic skin. Scientific Reports, 2017, 7, 18045.	3.3	37
54	Interleukin-6 in psoriasis: expression and mitogenicity studies. Archives of Dermatological Research, 1992, 284, 324-332.	1.9	35

#	Article	IF	CITATIONS
55	Comparison of Molecular Signatures from Multiple Skin Diseases Identifies Mechanisms of Immunopathogenesis. Journal of Investigative Dermatology, 2015, 135, 151-159.	0.7	35
56	Translocation of an erythroid-specific hypersensitive site in deletion-type hereditary persistence of fetal hemoglobin Molecular and Cellular Biology, 1990, 10, 1382-1389.	2.3	33
57	The EGF receptor ligand amphiregulin controls cell division via FoxM1. Oncogene, 2016, 35, 2075-2086.	5.9	29
58	Causal Relationship and Shared Genetic Loci between Psoriasis and Type 2 Diabetes through Trans-Disease Meta-Analysis. Journal of Investigative Dermatology, 2021, 141, 1493-1502.	0.7	29
59	Meta-analysis of RNA sequencing datasets reveals an association between TRAJ23, psoriasis, and IL-17A. JCI Insight, 2018, 3, .	5.0	29
60	The psoriasis-protective TYK2 I684S variant impairs IL-12 stimulated pSTAT4 response in skin-homing CD4+ and CD8+ memory T-cells. Scientific Reports, 2018, 8, 7043.	3.3	28
61	A Transethnic Mendelian Randomization Study Identifies Causality of Obesity on Risk of Psoriasis. Journal of Investigative Dermatology, 2019, 139, 1397-1400.	0.7	28
62	IL-15 and Psoriasis: Another Genetic Link to Th17?. Journal of Investigative Dermatology, 2007, 127, 2495-2497.	0.7	27
63	Fine mapping of eight psoriasis susceptibility loci. European Journal of Human Genetics, 2015, 23, 844-853.	2.8	25
64	Dual Role of Act1 in Keratinocyte Differentiation and Host Defense: TRAF3IP2 Silencing Alters Keratinocyte Differentiation and Inhibits IL-17 Responses. Journal of Investigative Dermatology, 2017, 137, 1501-1511.	0.7	22
65	A rare coding allele inIFIH1is protective for psoriatic arthritis. Annals of the Rheumatic Diseases, 2017, 76, 1321-1324.	0.9	22
66	Emerging biomarkers in psoriatic arthritis. IUBMB Life, 2015, 67, 923-927.	3.4	20
67	FOXM1 allows human keratinocytes to bypass the oncogene-induced differentiation checkpoint in response to gain of MYC or loss of p53. Oncogene, 2017, 36, 956-965.	5.9	20
68	Quantifying Differences in Heritability among Psoriatic Arthritis (PsA), Cutaneous Psoriasis (PsC) and Psoriasis vulgaris (PsV). Scientific Reports, 2020, 10, 4925.	3.3	20
69	Fine Mapping of the Psoriasis Susceptibility Gene PSORS1: A Reassessment of Risk Associated with a Putative Risk Haplotype Lacking HLA-Cw6. Journal of Investigative Dermatology, 2005, 124, 921-930.	0.7	18
70	eQTL mapping identifies insertion- and deletion-specific eQTLs in multiple tissues. Nature Communications, 2015, 6, 6821.	12.8	18
71	SLC44A2 single nucleotide polymorphisms, isoforms, and expression: Association with severity of Meniere's disease?. Genomics, 2016, 108, 201-208.	2.9	18
72	Erlotinib-Induced Skin Inflammation Is IL-1 Mediated in KC-Tie2 Mice and Human Skin Organ Culture. Journal of Investigative Dermatology, 2015, 135, 910-913.	0.7	16

#	Article	lF	CITATIONS
73	Cyclosporine inhibits ornithine decarboxylase gene expression and acute inflammation in response to phorbol ester treatment of hairless mouse skin. Transplantation Proceedings, 1988, 20, 95-104.	0.6	15
74	Expanded Genome-Wide Association Study Meta-Analysis of Psoriasis Expands the Catalog of Common Psoriasis-Associated Variants. Journal of Investigative Dermatology Symposium Proceedings, 2018, 19, S77-S78.	0.8	13
75	Transgenic expression of human amphiregulin in mouse skin: inflammatory epidermal hyperplasia and enlarged sebaceous glands. Experimental Dermatology, 2016, 25, 187-193.	2.9	12
76	Relationship between periodontitis and psoriasis: A twoâ€sample Mendelian randomization study. Journal of Clinical Periodontology, 2022, 49, 573-579.	4.9	12
77	Membrane-Tethered Intracellular DomainÂof Amphiregulin Promotes Keratinocyte Proliferation. Journal of Investigative Dermatology, 2016, 136, 444-452.	0.7	11
78	Epicardial adipose tissue volume is greater in men with severe psoriasis, implying an increased cardiovascular disease risk: A cross-sectional study. Journal of the American Academy of Dermatology, 2022, 86, 535-543.	1.2	11
79	Graphical algorithm for integration of genetic and biological data: proof of principle using psoriasis as a model. Bioinformatics, 2015, 31, 1243-1249.	4.1	10
80	Translocation of an erythroid-specific hypersensitive site in deletion-type hereditary persistence of fetal hemoglobin. Molecular and Cellular Biology, 1990, 10, 1382-1389.	2.3	10
81	Disease consequences of higher adiposity uncoupled from its adverse metabolic effects using Mendelian randomisation. ELife, 2022, 11 , .	6.0	10
82	S100A2 coding sequence polymorphism: characterization and lack of association with psoriasis. Clinical and Experimental Dermatology, 2001, 26, 79-83.	1.3	9
83	Assignment of the human CRABP-II gene to chromosome $1q21$ by nonisotopic in situ hybridization. Human Genetics, $1992, 89, 487-90$.	3.8	8
84	A Single SNP Surrogate for Genotyping HLA-C*06:02 in Diverse Populations. Journal of Investigative Dermatology, 2015, 135, 1177-1180.	0.7	8
85	Transethnic analysis of psoriasis susceptibility in South Asians and Europeans enhances fine mapping in the MHC and genome wide. Human Genetics and Genomics Advances, 2022, 3, 100069.	1.7	8
86	Large-Scale Imputation of KIR Copy Number and HLA Alleles in North American and European Psoriasis Case-Control Cohorts Reveals Association of Inhibitory KIR2DL2 With Psoriasis. Frontiers in Immunology, 2021, 12, 684326.	4.8	7
87	Integrative Approach to Reveal Cell Type Specificity and Gene Candidates for Psoriatic Arthritis Outside the MHC. Frontiers in Genetics, 2019, 10, 304.	2.3	6
88	Cytokine and genetic regulation of psoriasis. Advances in Dermatology, 1995, 10, 99-133; discussion 134.	2.0	6
89	Psoriasis clinical registries, genetics, and genomics. Annals of the Rheumatic Diseases, 2005, 64, ii106-ii107.	0.9	5
90	Research Techniques Made Simple: Using Genome-WideÂAssociation Studies to Understand Complex CutaneousÂDisorders. Journal of Investigative Dermatology, 2018, 138, e23-e29.	0.7	5

#	Article	IF	CITATIONS
91	Structural variation of centromeric endogenous retroviruses in human populations and their impact on cutaneous T-cell lymphoma, Sézary syndrome, and HIV infection. BMC Medical Genomics, 2019, 12, 58.	1.5	5
92	Transcriptional determinants of individualized inflammatory responses at anatomically separate sites. Journal of Allergy and Clinical Immunology, 2018, 141, 805-808.	2.9	4
93	ALK3 Is Not Required for the Embryonic Development, Homeostasis, and Repopulation of Epidermal Langerhans Cells in Steady and Inflammatory States. Journal of Investigative Dermatology, 2021, 141, 1858-1861.	0.7	4
94	Retinoid Regulation of Crabp-II mRNA in an Organotypic Keratinocyte Culture System. Cutaneous and Ocular Toxicology, 1993, 12, 173-181.	0.3	3
95	The Act1 D10N missense variant impairs CD40 signaling in human B-cells. Genes and Immunity, 2019, 20, 23-31.	4.1	3
96	What Can Psoriasis Teach Us About the Genetic Basis of Cutaneous T-Cell Lymphoma?. Clinical Lymphoma, Myeloma and Leukemia, 2010, 10, S70-S73.	0.4	2
97	The Quest for Psoriasis Autoantigens: Genetics Meets Immunology in theÂMelanocyte. Journal of Investigative Dermatology, 2017, 137, 2042-2045.	0.7	2
98	A case of recurrent and paraneoplastic pityriasis rubra pilaris. JAAD Case Reports, 2021, 12, 74-76.	0.8	2
99	Meeting Report: 68th Montagna Symposium on the Biology of Skin "Decoding Complex Skin Diseases: Integrating Genetics, Genomics, and Disease Biology― Journal of Investigative Dermatology, 2020, 140, 2105-2110.	0.7	O
100	Making Lemonade: Putting the Wisdom of the Genome to Work in Atopic Dermatitis. Journal of Investigative Dermatology, 2021, 141, 2561-2564.	0.7	0
101	c-Ha-ras and UV photocarcinogenesis. Do rays raise ras?. Archives of Dermatology, 1990, 126, 379-82.	1.4	О