
## Mario R Montesdeoca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9197576/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The influence of nutrient loading on methylmercury availability in Long Island estuaries.<br>Environmental Pollution, 2021, 268, 115510.                                                                                                           | 7.5 | 11        |
| 2  | Landscape Influence on the Browning of a Lake Watershed in the Adirondack Region of New York, USA.<br>Soil Systems, 2020, 4, 50.                                                                                                                   | 2.6 | 8         |
| 3  | The impact of lime additions on mercury dynamics in stream chemistry and macroinvertebrates: a comparison of watershed and direct stream addition management strategies. Ecotoxicology, 2020, 29, 1627-1643.                                       | 2.4 | 1         |
| 4  | Watershed influences on mercury in tributaries to Lake Ontario. Ecotoxicology, 2020, 29, 1614-1626.                                                                                                                                                | 2.4 | 8         |
| 5  | Effects of Brownfield Remediation on Total Gaseous Mercury Concentrations in an Urban Landscape.<br>Sensors, 2020, 20, 387.                                                                                                                        | 3.8 | 2         |
| 6  | Patterns and trends of fish mercury in New York State. Ecotoxicology, 2020, 29, 1709-1720.                                                                                                                                                         | 2.4 | 8         |
| 7  | Total and methylmercury concentrations in ground and surface waters in natural and restored freshwater wetlands in northern New York. Ecotoxicology, 2020, 29, 1602-1613.                                                                          | 2.4 | 5         |
| 8  | Climate change may alter mercury fluxes in northern hardwood forests. Biogeochemistry, 2019, 146, 1-16.                                                                                                                                            | 3.5 | 18        |
| 9  | Response of mercury in an Adirondack (NY, USA) forest stream to watershed lime application.<br>Environmental Sciences: Processes and Impacts, 2018, 20, 607-620.                                                                                   | 3.5 | 6         |
| 10 | Water quality function of an extensive vegetated roof. Science of the Total Environment, 2018, 625, 928-939.                                                                                                                                       | 8.0 | 39        |
| 11 | Concentrations and content of mercury in bark, wood, and leaves in hardwoods and conifers in four forested sites in the northeastern USA. PLoS ONE, 2018, 13, e0196293.                                                                            | 2.5 | 22        |
| 12 | Measuring mercury in wood: challenging but important. International Journal of Environmental<br>Analytical Chemistry, 2017, 97, 456-467.                                                                                                           | 3.3 | 22        |
| 13 | Deposition of mercury in forests across a montane elevation gradient: Elevational and seasonal patterns in methylmercury inputs and production. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1922-1939.                           | 3.0 | 30        |
| 14 | Water quantity and quality response of a green roof to storm events: Experimental and monitoring observations. Environmental Pollution, 2016, 218, 664-672.                                                                                        | 7.5 | 56        |
| 15 | Mobilization and Toxicity Potential of Aluminum from Alum Floc Deposits in Kensico Reservoir, New<br>York. Journal of the American Water Resources Association, 2014, 50, 143-152.                                                                 | 2.4 | 3         |
| 16 | Legacy mercury and stoichiometry with C, N, and S in soil, pore water, and stream water across the<br>uplandâ€wetland interface: The influence of hydrogeologic setting. Journal of Geophysical Research G:<br>Biogeosciences, 2013, 118, 825-841. | 3.0 | 40        |
| 17 | Spatial patterns of mercury in biota of Adirondack, New York lakes. Ecotoxicology, 2011, 20, 1543-1554.                                                                                                                                            | 2.4 | 52        |
| 18 | Mercury dynamics and transport in two Adirondack Lakes. Limnology and Oceanography, 2009, 54, 413-427.                                                                                                                                             | 3.1 | 32        |

| #  | Article                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Mercury transport in response to storm events from a northern forest landscape. Hydrological<br>Processes, 2008, 22, 4813-4826.            | 2.6 | 37        |
| 20 | Inputs, storage, and transport of total and methyl mercury in two temperate forest wetlands. Journal of Geophysical Research, 2008, 113, . | 3.3 | 53        |