Cristina SÃ nchez-Mora

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9197496/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mendelian randomization analysis for attention deficit/hyperactivity disorder: studying a broad range of exposures and outcomes. International Journal of Epidemiology, 2023, 52, 386-402.	1.9	13
2	Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors. Biological Psychiatry, 2022, 91, 313-327.	1.3	114
3	Meta-analysis and systematic review of ADGRL3 (LPHN3) polymorphisms in ADHD susceptibility. Molecular Psychiatry, 2021, 26, 2277-2285.	7.9	22
4	Exploring allele specific methylation in drug dependence susceptibility. Journal of Psychiatric Research, 2021, 136, 474-482.	3.1	1
5	Genetic overlap and causality between substance use disorder and <scp>attentionâ€deficit</scp> and hyperactivity disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2021, 186, 140-150.	1.7	25
6	Integrating genomics and transcriptomics: Towards deciphering ADHD. European Neuropsychopharmacology, 2021, 44, 1-13.	0.7	6
7	Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nature Genetics, 2021, 53, 817-829.	21.4	629
8	Gut microbiota signature in treatment-naÃ ⁻ ve attention-deficit/hyperactivity disorder. Translational Psychiatry, 2021, 11, 382.	4.8	25
9	Genetic association study of childhood aggression across raters, instruments, and age. Translational Psychiatry, 2021, 11, 413.	4.8	31
10	Continuity of Genetic Risk for Aggressive Behavior Across the Life-Course. Behavior Genetics, 2021, 51, 592-606.	2.1	13
11	Brain structural and functional substrates of ADGRL3 (latrophilin 3) haplotype in attention-deficit/hyperactivity disorder. Scientific Reports, 2021, 11, 2373.	3.3	1
12	Attention-deficit/hyperactivity disorder and lifetime cannabis use: genetic overlap and causality. Molecular Psychiatry, 2020, 25, 2493-2503.	7.9	59
13	The Genetics of the Mood Disorder Spectrum: Genome-wide Association Analyses of More Than 185,000 Cases and 439,000 Controls. Biological Psychiatry, 2020, 88, 169-184.	1.3	137
14	Transcriptome profiling in adult attention-deficit hyperactivity disorder. European Neuropsychopharmacology, 2020, 41, 160-166.	0.7	7
15	Epigenome-wide association study of attention-deficit/hyperactivity disorder in adults. Translational Psychiatry, 2020, 10, 199.	4.8	14
16	Shared genetic background between children and adults with attention deficit/hyperactivity disorder. Neuropsychopharmacology, 2020, 45, 1617-1626.	5.4	72
17	ADGRL3 (LPHN3) variants predict substance use disorder. Translational Psychiatry, 2019, 9, 42.	4.8	29
18	A Potential Role for the STXBP5-AS1 Gene in Adult ADHD Symptoms. Behavior Genetics, 2019, 49, 270-285.	2.1	6

#	Article	IF	CITATIONS
19	Genome-wide analysis of emotional lability in adult attention deficit hyperactivity disorder (ADHD). European Neuropsychopharmacology, 2019, 29, 795-802.	0.7	6
20	Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders. Cell, 2019, 179, 1469-1482.e11.	28.9	935
21	Epigenetic signature for attention-deficit/hyperactivity disorder: identification of miR-26b-5p, miR-185-5p, and miR-191-5p as potential biomarkers in peripheral blood mononuclear cells. Neuropsychopharmacology, 2019, 44, 890-897.	5.4	31
22	Evaluation of previous substance dependence genome-wide significant findings in a Spanish sample. Drug and Alcohol Dependence, 2018, 187, 358-362.	3.2	4
23	Integrative genomic analysis of methylphenidate response in attention-deficit/hyperactivity disorder. Scientific Reports, 2018, 8, 1881.	3.3	14
24	A Genetic Investigation of Sex Bias in the Prevalence of Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, 2018, 83, 1044-1053.	1.3	146
25	Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .	12.6	1,085
26	Genomeâ€wide association metaâ€analysis of age at first cannabis use. Addiction, 2018, 113, 2073-2086.	3.3	24
27	Pharmacogenetics of methylphenidate response and tolerability in attention-deficit/hyperactivity disorder. Pharmacogenomics Journal, 2017, 17, 98-104.	2.0	23
28	Peripheral levels of BDNF and opiate-use disorder: literature review and update. Reviews in the Neurosciences, 2017, 28, 499-508.	2.9	13
29	Gene-wide Association Study Reveals RNF122 Ubiquitin Ligase as a Novel Susceptibility Gene for Attention Deficit Hyperactivity Disorder. Scientific Reports, 2017, 7, 5407.	3.3	11
30	Genome-wide association study of lifetime cannabis use based on a large meta-analytic sample of 32 330 subjects from the International Cannabis Consortium. Translational Psychiatry, 2016, 6, e769-e769.	4.8	136
31	Preliminary evidence for association of genetic variants in pri-miR-34b/c and abnormal miR-34c expression with attention deficit and hyperactivity disorder. Translational Psychiatry, 2016, 6, e879-e879.	4.8	31
32	Genomeâ€wide analyses of aggressiveness in attentionâ€deficit hyperactivity disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 733-747.	1.7	40
33	Connecting the dots, genome-wide association studies in substance use. Molecular Psychiatry, 2016, 21, 733-735.	7.9	31
34	The role of hypothalamus–pituitary–adrenal genes and childhood trauma in borderline personality disorder. European Archives of Psychiatry and Clinical Neuroscience, 2016, 266, 307-316.	3.2	43
35	On the role of <i>NOS1</i> ex1fâ€VNTR in ADHD—allelic, subgroup, and metaâ€analysis. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 445-458.	1.7	20
36	Dopamine receptor DRD4 gene and stressful life events in persistent attention deficit hyperactivity disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 480-491.	1.7	18

#	Article	IF	CITATIONS
37	New suggestive genetic loci and biological pathways for attention function in adult attentionâ€deficit/hyperactivity disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 459-470.	1.7	78
38	Frustrated expected reward induces differential transcriptional changes in the mouse brain. Addiction Biology, 2015, 20, 22-37.	2.6	12
39	Changes in brain-derived neurotrophic factor (BDNF) during abstinence could be associated with relapse in cocaine-dependent patients. Psychiatry Research, 2015, 225, 309-314.	3.3	26
40	An exploratory association study of the influence of noradrenergic genes and childhood trauma in Borderline Personality Disorder. Psychiatry Research, 2015, 229, 589-592.	3.3	10
41	Transcriptomic and genetic studies identify NFAT5 as a candidate gene for cocaine dependence. Translational Psychiatry, 2015, 5, e667-e667.	4.8	17
42	Case–Control Genome-Wide Association Study of Persistent Attention-Deficit Hyperactivity Disorder Identifies FBXO33 as a Novel Susceptibility Gene for the Disorder. Neuropsychopharmacology, 2015, 40, 915-926.	5.4	59
43	Changes in the serum levels of brain-derived neurotrophic factor in adults with attention deficit hyperactivity disorder after treatment with atomoxetine. Psychopharmacology, 2014, 231, 1389-1395.	3.1	17
44	Association between methylation of the glucocorticoid receptor gene, childhood maltreatment, and clinical severity in borderline personality disorder. Journal of Psychiatric Research, 2014, 57, 34-40.	3.1	105
45	Genome-wide copy number variation analysis in adult attention-deficit and hyperactivity disorder. Journal of Psychiatric Research, 2014, 49, 60-67.	3.1	50
46	Brain-derived neurotrophic factor serum levels in cocaine-dependent patients during early abstinence. European Neuropsychopharmacology, 2013, 23, 1078-1084.	0.7	49
47	Evaluation of single nucleotide polymorphisms in the miR-183–96–182 cluster in adulthood attention-deficit and hyperactivity disorder (ADHD) and substance use disorders (SUDs). European Neuropsychopharmacology, 2013, 23, 1463-1473.	0.7	38
48	Evaluation of common variants in 16 genes involved in the regulation of neurotransmitter release in ADHD. European Neuropsychopharmacology, 2013, 23, 426-435.	0.7	28
49	Lack of association between the LPR and VNTR polymorphisms of the serotonin transporter gene and cocaine dependence in a Spanish sample. Psychiatry Research, 2013, 210, 1287-1289.	3.3	6
50	Association study of 37 genes related to serotonin and dopamine neurotransmission and neurotrophic factors in cocaine dependence. Genes, Brain and Behavior, 2013, 12, 39-46.	2.2	27
51	Decreased serum levels of brain-derived neurotrophic factor in adults with attention-deficit hyperactivity disorder. International Journal of Neuropsychopharmacology, 2013, 16, 1267-1275.	2.1	56
52	Serum Brain-Derived Neurotrophic Factor Levels and Cocaine-Induced Transient Psychotic Symptoms. Neuropsychobiology, 2013, 68, 146-155.	1.9	17
53	<i>DISC1</i> in adult ADHD patients: An association study in two European samples. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013, 162, 227-234.	1.7	16
54	Candidate pathway association study in cocaine dependence: The control of neurotransmitter release. World Journal of Biological Psychiatry, 2012, 13, 126-134.	2.6	15

#	Article	IF	CITATIONS
55	An association study of sequence variants in the forkhead box P2 (FOXP2) gene and adulthood attention-deficit/hyperactivity disorder in two European samples. Psychiatric Genetics, 2012, 22, 155-160.	1.1	14
56	Candidate system analysis in ADHD: Evaluation of nine genes involved in dopaminergic neurotransmission identifies association with <i>DRD1</i> . World Journal of Biological Psychiatry, 2012, 13, 281-292.	2.6	28
57	Association of Neurexin 3 polymorphisms with smoking behavior. Genes, Brain and Behavior, 2012, 11, 704-711.	2.2	29
58	Contribution of LPHN3 to the genetic susceptibility to ADHD in adulthood: a replication study. Genes, Brain and Behavior, 2011, 10, 149-157.	2.2	103
59	Exploring <i>DRD4</i> and its interaction with <i>SLC6A3</i> as possible risk factors for adult ADHD: A metaâ€analysis in four European populations. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 600-612.	1.7	22
60	Metaâ€analysis of brainâ€derived neurotrophic factor p.Val66Met in adult ADHD in four European populations. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 512-523.	1.7	55
61	An international multicenter association study of the serotonin transporter gene in persistent ADHD. Genes, Brain and Behavior, 2010, 9, 449-458.	2.2	55
62	Multicenter Analysis of the SLC6A3/DAT1 VNTR Haplotype in Persistent ADHD Suggests Differential Involvement of the Gene in Childhood and Persistent ADHD. Neuropsychopharmacology, 2010, 35, 656-664.	5.4	180
63	Case-Control Study of Six Genes Asymmetrically Expressed in the Two Cerebral Hemispheres: Association of BAIAP2 with Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, 2009, 66, 926-934.	1.3	59