
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9196699/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gas Permeability, Fractional Free Volume and Molecular Kinetic Diameters: The Effect of Thermal Rearrangement on ortho-hydroxy Polyamide Membranes Loaded with a Porous Polymer Network. Membranes, 2022, 12, 200.	1.4	5
2	Gas separation membranes obtained by partial pyrolysis of polyimides exhibiting polyethylene oxide moieties. Polymer, 2022, 247, 124789.	1.8	4
3	Mixed Matrix Membranes Loaded with a Porous Organic Polymer Having Bipyridine Moieties. Membranes, 2022, 12, 547.	1.4	11
4	Pyrrolidine-based catalytic microporous polymers in sustainable C N and C C bond formation via iminium and enamine activation. Materials Today Chemistry, 2022, 24, 100966.	1.7	3
5	Gas Separation by Mixed Matrix Membranes with Porous Organic Polymer Inclusions within o-Hydroxypolyamides Containing m-Terphenyl Moieties. Polymers, 2021, 13, 931.	2.0	10
6	Highly Permeable Mixed Matrix Membranes of Thermally Rearranged Polymers and Porous Polymer Networks for Gas Separations. ACS Applied Polymer Materials, 2021, 3, 5224-5235.	2.0	14
7	Hydrogen Recovery by Mixed Matrix Membranes Made from 6FCl-APAF HPA with Different Contents of a Porous Polymer Network and Their Thermal Rearrangement. Polymers, 2021, 13, 4343.	2.0	4
8	Synthesis and properties of highly processable asymmetric polyimides with bulky phenoxy groups. High Performance Polymers, 2020, 32, 455-468.	0.8	3
9	Aromatic polyimides and copolyimides containing bulky t-butyltriphenylmethane units. Polymer Bulletin, 2020, 77, 5103-5125.	1.7	5
10	Porous Organic Polymers Containing Active Metal Centers for Suzuki–Miyaura Heterocoupling Reactions. ACS Applied Materials & Interfaces, 2020, 12, 56974-56986.	4.0	23
11	Gas separation properties of aromatic polyimides with bulky groups. Comparison of experimental and simulated results. Journal of Membrane Science, 2020, 602, 117959.	4.1	26
12	Enhancement of CO2/CH4 permselectivity via thermal rearrangement of mixed matrix membranes made from an o-hydroxy polyamide with an optimal load of a porous polymer network. Separation and Purification Technology, 2020, 247, 116895.	3.9	16
13	New Materials for Gas Separation Applications: Mixed Matrix Membranes Made from Linear Polyimides and Porous Polymer Networks Having Lactam Groups. Industrial & Engineering Chemistry Research, 2019, 58, 9585-9595.	1.8	22
14	Thermally rearranged polybenzoxazoles made from poly(ortho-hydroxyamide)s. Characterization and evaluation as gas separation membranes. Reactive and Functional Polymers, 2018, 127, 38-47.	2.0	29
15	Thermally Rearranged Polybenzoxazoles Containing Bulky Adamantyl Groups from Ortho-Substituted Precursor Copolyimides. Macromolecules, 2018, 51, 1605-1619.	2.2	36
16	Partially pyrolized gas-separation membranes made from blends of copolyetherimides and polyimides. European Polymer Journal, 2018, 103, 390-399.	2.6	11
17	Microporous Polymer Networks for Carbon Capture Applications. ACS Applied Materials & Interfaces, 2018, 10, 26195-26205.	4.0	41
18	Structural Health Monitoring in Composite Structures by Fiber-Optic Sensors. Sensors, 2018, 18, 1094.	2.1	99

#	Article	IF	CITATIONS
19	Determination of Gas Transport Coefficients of Mixed Gases in 6FDA-TMPDA Polyimide by NMR Spectroscopy. Macromolecules, 2017, 50, 3590-3597.	2.2	11
20	Sorption, diffusion, and permeability of humid gases and aging of thermally rearranged (TR) polymer membranes from a novel ortho-hydroxypolyimide. Journal of Membrane Science, 2017, 542, 439-455.	4.1	22
21	Aromatic poly(ether ether ketone)s capable of crosslinking <i>via</i> UV irradiation to improve gas separation performance. RSC Advances, 2017, 7, 55371-55381.	1.7	10
22	The effect of humidity on the CO2/N2 separation performance of copolymers based on hard polyimide segments and soft polyether chains: Experimental and modeling. Green Energy and Environment, 2016, 1, 201-210.	4.7	13
23	Sorption and transport of CO2 in copolymers containing soft (PEO, PPO) and hard (BKDA-ODA and) Tj ETQq1 1 Science, 2016, 520, 187-200.	0.784314 4.1	rgBT /Overloc 6
24	Soluble, microporous, Tröger's Base copolyimides with tunable membrane performance for gas separation. Chemical Communications, 2016, 52, 3817-3820.	2.2	75
25	High-productivity gas separation membranes derived from pyromellitic dianhydride and nonlinear diamines. Journal of Membrane Science, 2016, 501, 191-198.	4.1	25
26	Gas separation membranes made through thermal rearrangement of ortho-methoxypolyimides. RSC Advances, 2015, 5, 102261-102276.	1.7	21
27	Effect of polymer structure on gas transport properties of selected aromatic polyimides, polyamides and TR polymers. Journal of Membrane Science, 2015, 493, 766-781.	4.1	63
28	Gas Transport Coefficients of Phthalide-Containing High-Tg Glassy Polymers Determined by Gas-Flux and NMR Measurements. Macromolecules, 2015, 48, 2585-2592.	2.2	8
29	New aromatic polyamides and polyimides having an adamantane bulky group. Materials Today Communications, 2015, 5, 23-31.	0.9	36
30	Thermally rearranged polybenzoxazoles and poly(benzoxazole-co-imide)s from ortho-hydroxyamine monomers for high performance gas separation membranes. Journal of Membrane Science, 2015, 493, 329-339.	4.1	35
31	Insight into ETS-10 synthesis for the preparation of mixed matrix membranes for CO ₂ /CH ₄ gas separation. RSC Advances, 2015, 5, 102392-102398.	1.7	5
32	Advances in the design of co-poly(ether-imide) membranes for CO2 separations. Influence of aromatic rigidity on crystallinity, phase segregation and gas transport. European Polymer Journal, 2015, 62, 130-138.	2.6	24
33	Investigation of the chemical and morphological structure of thermally rearranged polymers. Polymer, 2014, 55, 6649-6657.	1.8	32
34	Prediction of gas permeability of block-segregated polymeric membranes by an effective medium model. Journal of Membrane Science, 2014, 453, 27-35.	4.1	18
35	Hydrophilic porous asymmetric ultrafiltration membranes of aramid-g-PEO copolymers. Journal of Membrane Science, 2014, 454, 233-242.	4.1	20
36	Helium Recovery by Membrane Gas Separation Using Poly(<i>o</i> -acyloxyamide)s. Industrial & Engineering Chemistry Research, 2014, 53, 12809-12818.	1.8	18

#	Article	IF	CITATIONS
37	Thermally rearranged polybenzoxazoles membranes with biphenyl moieties: Monomer isomeric effect. Journal of Membrane Science, 2014, 450, 369-379.	4.1	80
38	Liquid–liquid displacement porosimetry applied to several MF and UF membranes. Desalination, 2013, 327, 14-23.	4.0	17
39	Local chain mobility dependence on molecular structure in polyimides with bulky side groups: Correlation with gas separation properties. Journal of Membrane Science, 2013, 434, 121-129.	4.1	46
40	On the influence of the proportion of PEO in thermally controlled phase segregation of copoly(ether-imide)s for gas separation. Journal of Membrane Science, 2013, 434, 26-34.	4.1	27
41	Influence of the PEO length in gas separation properties of segregating aromatic–aliphatic copoly(ether-imide)s. Chemical Engineering Science, 2013, 104, 574-585.	1.9	16
42	Hydrophilic polyisophthalamides containing poly(ethylene oxide) side chains: Synthesis, characterization, and physical properties. Journal of Polymer Science Part A, 2013, 51, 963-976.	2.5	6
43	Gas separation properties of systems with different amounts of long poly(ethylene oxide) segments for mixtures including carbon dioxide. International Journal of Greenhouse Gas Control, 2013, 12, 146-154.	2.3	22
44	Thermal degradation of crosslinked copolyimide membranes to obtain productive gas separation membranes. Polymer Degradation and Stability, 2013, 98, 743-750.	2.7	10
45	Thermally Segregated Copolymers with PPO Blocks for Nitrogen Removal from Natural Gas. Industrial & Engineering Chemistry Research, 2013, 52, 4312-4322.	1.8	16
46	Synthesis, characterization, and evaluation of novel polyhydantoins as gas separation membranes. Journal of Polymer Science Part A, 2013, 51, 4052-4060.	2.5	3
47	Tuning microcavities in thermally rearranged polymer membranes for CO2 capture. Physical Chemistry Chemical Physics, 2012, 14, 4365.	1.3	126
48	Improving the Permeation Properties by Plasma Surface Modification. Procedia Engineering, 2012, 44, 1353-1355.	1.2	1
49	CO2 Sorption and Transport in Copoly(Ether-Imide)s having Poly(Propylene Oxide) Segments at Different Temperatures and Pressures. Procedia Engineering, 2012, 44, 1103-1104.	1.2	0
50	Influence of Annealing Temperature in Permeation and Plasticization Resistance for Samples Containing Carboxylic Acid. Procedia Engineering, 2012, 44, 175-176.	1.2	0
51	Novel efficient catalysts based on imine-linked mesoporous polymers for hydrogenation and cyclopropanation reactions. Journal of Materials Chemistry, 2012, 22, 24637.	6.7	34
52	Formation of thermally rearranged (TR) polybenzoxazoles: Effect of synthesis routes and polymer form. European Polymer Journal, 2012, 48, 1313-1322.	2.6	71
53	Preparation, characterization and antifouling property of polyethersulfone–PANI/PMA ultrafiltration membranes. Desalination, 2012, 299, 113-122.	4.0	75
54	Phase Segregation and Gas Separation Properties of Thermally Treated Copoly(ether-imide) from an Aromatic Dianhydride, an Aromatic Diamine, and Various Aliphatic Diamines. Industrial & Engineering Chemistry Research, 2012, 51, 3766-3775.	1.8	15

#	Article	IF	CITATIONS
55	Kinetic Study of the Thermopolymerization of Furfuryl Methacrylate (FM) by Mathematical Modeling, 2–Moments of Molecular Size Distribution of the Primary Chains in the Networks. Macromolecular Theory and Simulations, 2012, 21, 241-249.	0.6	0
56	Thermally treated copoly(ether-imide)s made from bpda and alifatic plus aromatic diamines. GAS separation properties with different aromatic diamimes. Journal of Membrane Science, 2012, 387-388, 54-65.	4.1	36
57	Preparation and gas separation properties of partially pyrolyzed membranes (PPMs) derived from copolyimides containing polyethylene oxide side chains. Journal of Membrane Science, 2012, 409-410, 200-211.	4.1	23
58	Synthesis, Characterization, and Gas Separation Properties of Novel Copolyimides Containing Adamantyl Ester Pendant Groups. Macromolecules, 2011, 44, 2780-2790.	2.2	58
59	Reactivity Study of Elementary Steps in the Polymerization Mechanism of Acrylfuranic Compounds by Frontier Molecular Orbital Theory. Macromolecular Theory and Simulations, 2011, 20, 850-866.	0.6	1
60	Linear polyisophthalamides from the trifunctional monomer 5-hydroxyisophthalic acid. A convenient approach towards functionalized aromatic polymers. European Polymer Journal, 2011, 47, 1054-1064.	2.6	10
61	Design of gas separation membranes derived of rigid aromatic polyimides. 1. Polymers from diamines containing di-tert-butyl side groups. Journal of Membrane Science, 2010, 365, 145-153.	4.1	86
62	Partially pyrolyzed membranes (PPMs) derived from copolyimides having carboxylic acid groups. Preparation and gas transport properties. Journal of Membrane Science, 2010, 349, 385-392.	4.1	34
63	Physical properties of films made of copoly(ether-imide)s with long poly(ethylene oxide) segments. European Polymer Journal, 2010, 46, 2352-2364.	2.6	25
64	Mixed matrix membranes of 6FDA-6FpDA with surface functionalized γ-alumina particles. An analysis of the improvement of permselectivity for several gas pairs. Chemical Engineering Science, 2010, 65, 2227-2235.	1.9	43
65	Synthesis and properties of new aromatic polyisophthalamides with adamantylamide pendent groups. Journal of Polymer Science Part A, 2010, 48, 1743-1751.	2.5	45
66	Novel Aromatic Polyimides Derived from 5′- <i>t</i> -Butyl-2′-pivaloylimino-3,4,3′′,4′′- <i>m</i> -terphenyltetracarboxylic Dianhydride with Application on Gas Separation Processes. Macromolecules, 2010, 43, 2268-2275.	P ote ntial	50
67	Functionalization of γ-alumina cores by polyvinylpirrolidone: properties of the resulting biocompatible nanoparticles in aqueous suspension. Journal of Nanoparticle Research, 2009, 11, 341-354.	0.8	16
68	An Improved Method for Preparing Very High Molecular Weight Polyimides. Macromolecules, 2009, 42, 5892-5894.	2.2	33
69	New liquid absorbents for the removal of CO2 from gas mixtures. Energy and Environmental Science, 2009, 2, 883.	15.6	83
70	Microwave-Induced Synthesis of Aromatic Polyamides by the Phosphorylation Reaction. Australian Journal of Chemistry, 2009, 62, 250.	0.5	14
71	Fluorenyl cardo copolyimides containing poly(ethylene oxide) segments: Synthesis, characterization, and evaluation of properties. Journal of Polymer Science Part A, 2008, 46, 8170-8178.	2.5	22
72	Reactivity of the 4â€Aminoâ€5 <i>H</i> â€1,2â€Oxathioleâ€2,2â€Dioxide Heterocyclic System: A Combined Experimental and Theoretical Study. Chemistry - A European Journal, 2008, 14, 9620-9632.	1.7	17

#	Article	IF	CITATIONS
73	Effect of fractional free volume and <i>T_g</i> on gas separation through membranes made with different glassy polymers. Journal of Applied Polymer Science, 2008, 107, 1039-1046.	1.3	50
74	Sulfonated polynaphthalimides with benzimidazole pendant groups. Polymer, 2008, 49, 3875-3883.	1.8	40
75	Sulfonation of vulcanized ethylene–propylene–diene terpolymer membranes. Acta Materialia, 2008, 56, 4780-4788.	3.8	13
76	Thermal treatment of poly(ethylene oxide)-segmented copolyimide based membranes: An effective way to improve the gas separation properties. Journal of Membrane Science, 2008, 323, 53-59.	4.1	54
77	Synthesis and evaluation of properties of novel poly(benzimidazoleâ€amide)s. Journal of Polymer Science Part A, 2008, 46, 7566-7577.	2.5	24
78	Monomer Reactivity and Steric Factors affecting the Synthesis of Aromatic Polyamides. High Performance Polymers, 2007, 19, 592-602.	0.8	7
79	Experimental and Theoretical Study of an Improved Activated Polycondensation Method for Aromatic Polyimides. Macromolecules, 2007, 40, 8225-8232.	2.2	45
80	Thin-film polyimide/indium tin oxide composites for photovoltaic applications. Journal of Applied Polymer Science, 2007, 103, 3491-3497.	1.3	25
81	Synthesis and Properties of Novel Polyimides Bearing Sulfonated Benzimidazole Pendant Groups. Macromolecular Rapid Communications, 2007, 28, 616-622.	2.0	24
82	Gas separation of 6FDA–6FpDA membranesEffect of the solvent on polymer surfaces and permselectivity. Journal of Membrane Science, 2007, 293, 22-28.	4.1	68
83	Chemical modification of copolyimides with bulky pendent groups: Effect of modification on solubility and thermal stability. Polymer Degradation and Stability, 2007, 92, 2294-2299.	2.7	48
84	Effect of pendent oxyethylene moieties on the properties of aromatic polyisophthalamides. Journal of Polymer Science Part A, 2007, 45, 4671-4683.	2.5	19
85	Water vapor sorption and diffusion in sulfonated aromatic polyamides. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2007-2014.	2.4	11
86	Unprecedented Lability of the 5â€~-O-tert-Butyldimethylsilyl Group from 3â€~-Spiro-5â€~Ââ€~-(4â€~Ââ€~-acylamino-1â€~Ââ€~,2â€^Ââ€~-oxathiole-2â€~Ââ€~,2â€~Ââ€~-dioxide) Nucleoside Participation of the 4â€~Ââ€~-Acylamino Residue. Journal of Organic Chemistry, 2006, 71, 1407-1415.	Deri vat ives	via7Neighbori
87	Synthesis and characterization of new aromatic polyamides bearing crown ethers or their dipodal counterparts in the pendant structure. II. Benzo-15-crown-5 andortho-bis[2-(2-ethoxyethoxy)ethoxy]benzene. Journal of Polymer Science Part A, 2006, 44, 4063-4075.	2.5	25
88	Synthesis, characterization, and properties of new sequenced poly(ether amide)s based on 2-(4-aminophenyl)-5-aminobenzimidazole and 2-(3-aminophenyl)-5-aminobenzimidazole. Journal of Polymer Science Part A, 2006, 44, 1414-1423.	2.5	27
89	Thermal effect on polyethyleneoxide-containing copolyimide membranes for CO2/N2 separation. Desalination, 2006, 199, 188-190.	4.0	22
90	Permeability and selectivity of 6FDA-6FpDA gas membranes prepared from different solvents. Desalination, 2006, 200, 225-226.	4.0	9

#	Article	IF	CITATIONS
91	Effect of substituents on the permeation properties of polyamide membranes. Journal of Membrane Science, 2006, 280, 659-665.	4.1	76
92	Novel Cobalt (II) Phthalocyanine-Containing Polyimides: Synthesis, Characterization, Thermal and Optical Properties. Macromolecular Rapid Communications, 2006, 27, 1852-1858.	2.0	17
93	Synthesis and properties evaluation of novel halogenated polyimides designed to prepare functional polymers. Polymer, 2005, 46, 11247-11254.	1.8	6
94	Synthesis, characterization, and water sorption properties of new aromatic polyamides containing benzimidazole and ethylene oxide moieties. Journal of Polymer Science Part A, 2005, 43, 112-121.	2.5	88
95	Polyisophthalamides with heteroaromatic pendent rings: Synthesis, physical properties, and water uptake. Journal of Polymer Science Part A, 2005, 43, 5300-5311.	2.5	45
96	Molecular structure–dynamics relationships in glassy poly(isophthalamide)s as revealed by wide angle x-ray scattering, dielectric loss spectroscopy, and molecular modelling. Journal of Chemical Physics, 2004, 120, 8815-8823.	1.2	2
97	Soluble Polyamides and Polyimides Functionalized with Benzo-15-Crown-5-Pendant Groups. Macromolecular Rapid Communications, 2004, 25, 592-597.	2.0	42
98	Soluble Polyimides from a New Dianhydride: 5′-tert-Butyl-m-terphenyl-3,4,3″,4″-tetracarboxylic Acid Dianhydride. Macromolecular Rapid Communications, 2003, 24, 686-691.	2.0	14
99	Gas separation properties of aromatic polyimides. Journal of Membrane Science, 2003, 215, 61-73.	4.1	108
100	Designing aromatic polyamides and polyimides for gas separation membranes. Macromolecular Symposia, 2003, 199, 293-306.	0.4	36
101	Gas separation properties of new poly(aryl ether ketone)s with pendant groups. Journal of Membrane Science, 2002, 205, 73-81.	4.1	16
102	Synthesis and characterization of halogen-containing poly(ether ketone ketone)s. Journal of Polymer Science Part A, 2002, 40, 2601-2608.	2.5	6
103	Synthesis and characterization of aromatic polyamides containing alkylphthalimido pendent groups. Journal of Polymer Science Part A, 2002, 40, 3711-3724.	2.5	61
104	Electrochemical parameters of sulfonated poly(ether ether sulfone) membranes in HCl solutions determined by impedance spectroscopy and membrane potential measurements. Solid State Ionics, 2001, 145, 53-60.	1.3	23
105	Novel aromatic polyamides with 1,3-benzoazole groups in the main chain. 1. Polymers derived from 2-(4-carboxyphenyl) benzoxazole-5- and 6-carboxylic acids. Synthesis and characterization. Polymer, 2001, 42, 7933-7941.	1.8	14
106	Synthesis and characterization of new soluble polyamides derived from 2,6-bis(4-aminophenyl)-3,5-dimethyltetrahydro-4H-pyran-4-one. Journal of Polymer Science Part A, 2001, 39, 1825-1832.	2.5	25
107	Synthesis and characterization of new soluble aromatic polyamides derived from 1,4-Bis(4-carboxyphenoxy)-2, 5-di-tert-butylbenzene. Journal of Polymer Science Part A, 2001, 39, 475-485.	2.5	72
108	Solvatochromic and rigidochromic fluorescent probes based on D–π-A diaryl ethylene and butadiene derivatives for UV-curing monitoring. Polymer, 2001, 42, 2815-2825.	1.8	34

#	Article	IF	CITATIONS
109	Synthesis and characterization of new soluble aromatic polyamides based on 4-(1-adamantyl)-1, 3-bis(4-aminophenoxy)benzene. Journal of Polymer Science Part A, 2000, 38, 1014-1023.	2.5	66
110	Sulfonated poly(ether ether sulfones). Journal of Membrane Science, 2000, 175, 43-52.	4.1	73
111	Gas separation properties of pendent phenyl substituted aromatic polyamides containing sulfone and hexafluoroisopropylidene groups. Polymer, 1999, 40, 5715-5722.	1.8	41
112	Synthesis, NMR studies and theoretical calculations of novel 3-spiro-branched ribofuranoses. Tetrahedron, 1999, 55, 12187-12200.	1.0	11
113	Synthesis and characterization of novel polyimides with bulky pendant groups. Journal of Polymer Science Part A, 1999, 37, 805-814.	2.5	106
114	Novel polyimides withp-nitrophenyl pendant groups. Synthesis and characterization. Journal of Polymer Science Part A, 1999, 37, 3377-3384.	2.5	4
115	Kinetic behavior in free-radical polymerization of isomer methacrylic monomers with active functional groups as side substituents. Journal of Polymer Science Part A, 1999, 37, 4528-4535.	2.5	2
116	Aromatic polyamides and polyimides derived from 3,3?-diaminobiphenyl: Synthesis, characterization, and molecular simulation study. Journal of Polymer Science Part A, 1999, 37, 4646-4655.	2.5	13
117	A theoretical study of the addition of silyl radicals to olefinic monomers. Macromolecular Theory and Simulations, 1999, 8, 93-101.	0.6	3
118	Quantum semiempirical study on the reactivity of silylated diamines in the synthesis of aromatic polyamides. Macromolecular Theory and Simulations, 1998, 7, 41-48.	0.6	14
119	Stereochemical structure of polymer systems bearing a vitamin E substituent studied by 13C n.m.r. spectroscopy. Polymer, 1998, 39, 6163-6171.	1.8	0
120	Quantum semiempirical study of the reactivity of monomers in the synthesis of aromatic polyamides and polyimides. Macromolecular Symposia, 1997, 122, 197-202.	0.4	3
121	Synthesis and Polycondensation of Novel Nitroaromatic Monomers. 2. Wholly Ordered Polymers ofN,Nâ€~-Bis(4-amino- 3-nitrophenyl)terephthalamide andN,Nâ€~-Bis[4-((4-amino-3-nitrophenyl)-) Tj ETQq1 1 0.7	84 3. ⊵4 rgE	3T Øverlock
122	Synthesis of Aromatic Polyisophthalamides byin SituSilylation of Aromatic Diaminesâ€. Macromolecules, 1997, 30, 2507-2508.	2.2	37
123			

#	Article	IF	CITATIONS
127	Synthesis and properties of aromatic polyamides with oligobenzamide pendent groups. I. Poly-5-(4-benzoylamino-1-benzoylamino)isophthalamides. Journal of Polymer Science Part A, 1995, 33, 1987-1994.	2.5	28
128	Gas separation properties of aromatic polyamides containing hexafluoroisopropylidene groups. Journal of Membrane Science, 1995, 104, 231-241.	4.1	66
129	Polyisopthalamides with pendent heterocyclic groups: 3. Pyridine pendent groups. Polymer, 1995, 36, 1113-1116.	1.8	7
130	Aromatic polyamides with pendent heterocycles: 2. Benzoxazole groups. Polymer, 1994, 35, 1317-1321.	1.8	21
131	Polyimides from 3,4:3″,4″-m-terphenyltetracarboxylic dianhydride. Synthesis and characterization. Macromolecular Rapid Communications, 1994, 15, 417-424.	2.0	11
132	Aromatic polyamides with benzothiazole pendent groups: synthesis, nuclear magnetic resonance structural study and evaluation of properties. Polymer, 1994, 35, 872-877.	1.8	33
133	Theoretical Study of the Synthesis of Aromatic Polyethers by the Nucleophilic Aromatic Substitution between Fluoro Aromatic Compounds and Phenoxides. Macromolecules, 1994, 27, 7164-7170.	2.2	35
134	Quantum semiempirical studies on the formation of aromatic polyamides, 1. Effect of structural parameters of diamines on the polyamidation reaction. Die Makromolekulare Chemie Theory and Simulations, 1993, 2, 815-827.	1.0	7
135	Polyisophthalamides with benzoyl pendent groups: Synthesis, characterization, and evaluation of properties. Journal of Polymer Science Part A, 1993, 31, 1203-1210.	2.5	10
136	Polyisophthalamides with phenylsulfonyl pendent groups. Journal of Polymer Science Part A, 1993, 31, 1383-1392.	2.5	11
137	Polyisophthalamides with phenylthio pendent groups. Journal of Polymer Science Part A, 1992, 30, 1327-1333.	2.5	25
138	Polyisophthalamides with pendant phenyl groups. Die Makromolekulare Chemie Rapid Communications, 1990, 11, 471-476.	1.1	12