
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9195929/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rad9, a 53BP1 Ortholog of Budding Yeast, Is Insensitive to Spo11-Induced Double-Strand Breaks During Meiosis. Frontiers in Cell and Developmental Biology, 2021, 9, 635383.	1.8	8
2	The synaptonemal complex central region modulates crossover pathways and feedback control of meiotic double-strand break formation. Nucleic Acids Research, 2021, 49, 7537-7553.	6.5	23
3	Regulation of Msh4-Msh5 association with meiotic chromosomes in budding yeast. Genetics, 2021, 219, .	1.2	8
4	Ultrastructural analysis in yeast reveals a meiosis-specific actin-containing nuclear bundle. Communications Biology, 2021, 4, 1009.	2.0	8
5	Structural dynamics of the chromo-shadow domain and chromodomain of HP1 bound to histone H3K9 methylated peptide, as measured by site-directed spin-labeling EPR spectroscopy. Biochemical and Biophysical Research Communications, 2021, 567, 42-48.	1.0	2
6	Phosphorylation of luminal region of the SUN-domain protein Mps3 promotes nuclear envelope localization during meiosis. ELife, 2021, 10, .	2.8	9
7	SCF ^{Cdc4} ubiquitin ligase regulates synaptonemal complex formation during meiosis. Life Science Alliance, 2021, 4, e202000933.	1.3	12
8	Enhanced processivity of Dnmt1 by monoubiquitinated histone H3. Genes To Cells, 2020, 25, 22-32.	0.5	18
9	Dual roles of yeast Rad51 N-terminal domain in repairing DNA double-strand breaks. Nucleic Acids Research, 2020, 48, 8474-8489.	6.5	14
10	Toward global standardization of conducting fair investigations of allegations of research misconduct. Accountability in Research, 2020, 27, 327-346.	1.6	6
11	Rad50 zinc hook functions as a constitutive dimerization module interchangeable with SMC hinge. Nature Communications, 2020, 11, 370.	5.8	24
12	Genetic Interactions of Histone Modification Machinery Set1 and PAF1C with the Recombination Complex Rec114-Mer2-Mei4 in the Formation of Meiotic DNA Double-Strand Breaks. International Journal of Molecular Sciences, 2020, 21, 2679.	1.8	7
13	Srs2 helicase prevents the formation of toxic DNA damage during late prophase I of yeast meiosis. Chromosoma, 2019, 128, 453-471.	1.0	10
14	Meiotic prophase-like pathway for cleavage-independent removal of cohesin for chromosome morphogenesis. Current Genetics, 2019, 65, 817-827.	0.8	13
15	Human RAD51 paralogue SWSAP1 fosters RAD51 filament by regulating the anti-recombinase FIGNL1 AAA+ ATPase. Nature Communications, 2019, 10, 1407.	5.8	49
16	Distinct Functions in Regulation of Meiotic Crossovers for DNA Damage Response Clamp Loader Rad24(Rad17) and Mec1(ATR) Kinase. Genetics, 2019, 213, 1255-1269.	1.2	13
17	Meiosis-specific prophase-like pathway controls cleavage-independent release of cohesin by Wapl phosphorylation. PLoS Genetics, 2019, 15, e1007851.	1.5	32
18	Molecular Camouflage of Plasmodium falciparum Merozoites by Binding of Host Vitronectin to P47 Fragment of SERA5. Scientific Reports, 2018, 8, 5052.	1.6	25

#	Article	IF	CITATIONS
19	Meiosisâ€specific cohesin component, Rec8, promotes the localization of Mps3 SUN domain protein on the nuclear envelope. Genes To Cells, 2018, 24, 94-106.	0.5	11
20	Modulating Crossover Frequency and Interference for Obligate Crossovers in <i>Saccharomyces cerevisiae</i> Meiosis. G3: Genes, Genomes, Genetics, 2017, 7, 1511-1524.	0.8	27
21	<scp>RFTS</scp> â€dependent negative regulation of Dnmt1 by nucleosome structure and histone tails. FEBS Journal, 2017, 284, 3455-3469.	2.2	8
22	Gammaâ€irradiated quiescent cells repair directly induced doubleâ€strand breaks but accumulate persistent doubleâ€strand breaks during subsequent DNA replication. Genes To Cells, 2016, 21, 789-797.	0.5	19
23	The Double-Strand Break Landscape of Meiotic Chromosomes Is Shaped by the Paf1 Transcription Elongation Complex in <i>Saccharomyces cerevisiae</i> . Genetics, 2016, 202, 497-512.	1.2	10
24	Rad61/Wpl1 (Wapl), a cohesin regulator, controls chromosome compaction during meiosis. Nucleic Acids Research, 2016, 44, 3190-3203.	6.5	42
25	Chromosome Synapsis Alleviates Mek1-Dependent Suppression of Meiotic DNA Repair. PLoS Biology, 2016, 14, e1002369.	2.6	95
26	ATM and SIRT6/SNF2H Mediate Transient H2AX Stabilization When DSBs Form by Blocking HUWE1 to Allow Efficient Î ³ H2AX Foci Formation. Cell Reports, 2015, 13, 2728-2740.	2.9	87
27	DNA damage response clamp 9-1-1 promotes assembly of ZMM proteins for formation of crossovers and synaptonemal complex. Journal of Cell Science, 2015, 128, 1494-506.	1.2	37
28	Canonical Non-Homologous End Joining in Mitosis Induces Genome Instability and Is Suppressed by M-phase-Specific Phosphorylation of XRCC4. PLoS Genetics, 2014, 10, e1004563.	1.5	68
29	Doubleâ€strand break repairâ€adox: Restoration of suppressed doubleâ€strand break repair during mitosis induces genomic instability. Cancer Science, 2014, 105, 1519-1525.	1.7	17
30	Dot1-Dependent Histone H3K79 Methylation Promotes the Formation of Meiotic Double-Strand Breaks in the Absence of Histone H3K4 Methylation in Budding Yeast. PLoS ONE, 2014, 9, e96648.	1.1	20
31	Remodeling of the Rad51 DNA Strand-Exchange Protein by the Srs2 Helicase. Genetics, 2013, 194, 859-872.	1.2	33
32	The small GTPase Rab5 homologue Ypt5 regulates cell morphology, sexual development, ion-stress response and vacuolar formation in fission yeast. Biochemical and Biophysical Research Communications, 2013, 441, 867-872.	1.0	5
33	A new protein complex promoting the assembly of Rad51 filaments. Nature Communications, 2013, 4, 1676.	5.8	91
34	Multiple Pathways Suppress Non-Allelic Homologous Recombination during Meiosis in Saccharomyces cerevisiae. PLoS ONE, 2013, 8, e63144.	1.1	19
35	Mps3 SUN domain is important for chromosome motion and juxtaposition of homologous chromosomes during meiosis. Genes To Cells, 2011, 16, 1081-1096.	0.5	32
36	Cyclinâ€dependent kinase promotes formation of the synaptonemal complex in yeast meiosis. Genes To Cells, 2010, 15, 1036-1050.	0.5	27

#	Article	IF	CITATIONS
37	Genetic Analysis of Baker's Yeast Msh4-Msh5 Reveals a Threshold Crossover Level for Meiotic Viability. PLoS Genetics, 2010, 6, e1001083.	1.5	68
38	Collaborative Action of Brca1 and CtIP in Elimination of Covalent Modifications from Double-Strand Breaks to Facilitate Subsequent Break Repair. PLoS Genetics, 2010, 6, e1000828.	1.5	133
39	Report from the Working Group of the Molecular Biology Society of Japan for the investigation of fraud in research papers. Genes To Cells, 2009, 14, 903-908.	0.5	2
40	Csm4-Dependent Telomere Movement on Nuclear Envelope Promotes Meiotic Recombination. PLoS Genetics, 2008, 4, e1000196.	1.5	79
41	Crossover assurance and crossover interference are distinctly regulated by the ZMM proteins during yeast meiosis. Nature Genetics, 2008, 40, 299-309.	9.4	197
42	Rad52 Promotes Postinvasion Steps of Meiotic Double-Strand-Break Repair. Molecular Cell, 2008, 29, 517-524.	4.5	117
43	Rapid Telomere Movement in Meiotic Prophase Is Promoted By NDJ1, MPS3, and CSM4 and Is Modulated by Recombination. Cell, 2008, 133, 1175-1187.	13.5	206
44	Forkhead-Associated Domain of Yeast Xrs2, a Homolog of Human Nbs1, Promotes Nonhomologous End Joining Through Interaction With a Ligase IV Partner Protein, Lif1. Genetics, 2008, 179, 213-225.	1.2	43
45	Functional interactions between BLM and XRCC3 in the cell. Journal of Cell Biology, 2007, 179, 53-63.	2.3	20
46	Rad6-Bre1-mediated histone H2B ubiquitylation modulates the formation of double-strand breaks during meiosis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11380-11385.	3.3	106
47	In vivo assembly and disassembly of Rad51 and Rad52 complexes during double-strand break repair. EMBO Journal, 2004, 23, 939-949.	3.5	110
48	Mnd1 Is Required for Meiotic Interhomolog Repair. Current Biology, 2004, 14, 752-762.	1.8	92
49	Roles of RecA homologues Rad51 and Dmc1 during meiotic recombination. Cytogenetic and Genome Research, 2004, 107, 201-207.	0.6	112
50	A Protein Complex Containing Mei5 and Sae3 Promotes the Assembly of the Meiosis-Specific RecA Homolog Dmc1. Cell, 2004, 119, 927-940.	13.5	125
51	Saccharomyces cerevisiae recA homologues RAD51 and DMC1 have both distinct and overlapping roles in meiotic recombination. Genes To Cells, 2003, 2, 615-629.	0.5	183
52	Crossover Interference in <i>Saccharomyces cerevisiae</i> Requires a <i>TID1/RDH54</i> and <i>DMC1</i> Dependent Pathway. Genetics, 2003, 163, 1273-1286.	1.2	75
53	The Mitotic DNA Damage Checkpoint Proteins Rad17 and Rad24 Are Required for Repair of Double-Strand Breaks During Meiosis in Yeast. Genetics, 2003, 164, 855-865.	1.2	74
54	The N-Terminal DNA-Binding Domain of Rad52 Promotes <i>RAD51</i> -Independent Recombination in <i>Saccharomyces cerevisiae</i> . Genetics, 2003, 165, 1703-1715.	1.2	20

#	Article	IF	CITATIONS
55	Effect of Ions and Nucleotides on the Interactions of Yeast Rad51 Protein with Single-Stranded Oligonucleotides. Journal of Biochemistry, 2001, 129, 469-475.	0.9	8
56	Saccharomyces cerevisiae Dmc1 Protein Promotes Renaturation of Single-strand DNA (ssDNA) and Assimilation of ssDNA into Homologous Super-coiled Duplex DNA. Journal of Biological Chemistry, 2001, 276, 41906-41912.	1.6	129
57	The controlling role of ATM in homologous recombinational repair of DNA damage. EMBO Journal, 2000, 19, 463-471.	3.5	271
58	c-Abl Tyrosine Kinase Is Not Essential for Ataxia Telangiectasia Mutated Functions in Chromosomal Maintenance. Journal of Biological Chemistry, 2000, 275, 725-728.	1.6	38
59	Tid1/Rdh54 promotes colocalization of Rad51 and Dmc1 during meiotic recombination. Proceedings of the United States of America, 2000, 97, 10814-10819.	3.3	192
60	Rad51 Accumulation at Sites of DNA Damage and in Postreplicative Chromatin. Journal of Cell Biology, 2000, 150, 283-292.	2.3	192
61	Rad51/RecA protein families and the associated proteins in eukaryotes. Mutation Research DNA Repair, 1999, 435, 13-21.	3.8	60
62	The Essential Functions of Human Rad51 Are Independent of ATP Hydrolysis. Molecular and Cellular Biology, 1999, 19, 6891-6897.	1.1	108
63	Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO Journal, 1998, 17, 5497-5508.	3.5	1,076
64	Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO Journal, 1998, 17, 598-608.	3.5	743
65	Stimulation by Rad52 of yeast Rad51- mediated recombination. Nature, 1998, 391, 404-407.	13.7	460
66	Multiple possible sites of BRAC2 interacting with DNA repair protein RAD51. , 1998, 21, 217-222.		33
67	Rad52 forms ring structures and coâ€operates with RPA in singleâ€strand DNA annealing. Genes To Cells, 1998, 3, 145-156.	0.5	295
68	Rad52 associates with RPA and functions with Rad55 and Rad57 to assemble meiotic recombination $\hat{a} \in \infty$ complexes. Genes and Development, 1998, 12, 2208-2221.	2.7	245
69	Regulation of Rad51 Function by c-Abl in Response to DNA Damage. Journal of Biological Chemistry, 1998, 273, 3799-3802.	1.6	184
70	Base pair switching by interconversion of sugar puckers in DNA extended by proteins of RecA-family: A model for homology search in homologous genetic recombination. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 11071-11076.	3.3	82
71	Xrcc3 Is Required for Assembly of Rad51 Complexes in Vivo. Journal of Biological Chemistry, 1998, 273, 21482-21488.	1.6	237
72	Homologous Recombination, but Not DNA Repair, Is Reduced in Vertebrate Cells Deficient in <i>RAD52</i> . Molecular and Cellular Biology, 1998, 18, 6430-6435.	1.1	224

#	Article	IF	CITATIONS
73	RAB22 and RAB163/mouse BRCA2: Proteins that specifically interact with the RAD51 protein. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 6927-6932.	3.3	231
74	Characterization of the Roles of the <i>Saccharomyces cerevisiae RAD54</i> Gene and a Homologue of <i>RAD54, RDH54/TID1</i> , in Mitosis and Meiosis. Genetics, 1997, 147, 1545-1556.	1.2	185
75	Localization of mouse Rad51 and Lim15 proteins on meiotic chromosomes at late stages of prophase 1. Genes To Cells, 1996, 1, 379-389.	0.5	25
76	Homologous recombination and the roles of double-strand breaks. Trends in Biochemical Sciences, 1995, 20, 387-391.	3.7	223
77	A species-specific interaction of Rad51 and Rad52 proteins in eukaryotes. Advances in Biophysics, 1995, 31, 93-100.	0.6	14
78	Localization of RecA-like recombination proteins on chromosomes of the lily at various meiotic stages Genes and Development, 1995, 9, 925-934.	2.7	149
79	RAD51 homologues in Xenopus laevis: two distinct genes are highly expressed in ovary and testis. Gene, 1995, 160, 195-200.	1.0	40
80	Cloning of human, mouse and fission yeast recombination genes homologous to RAD51 and recA. Nature Genetics, 1993, 4, 239-243.	9.4	506
81	Similarity of the yeast RAD51 filament to the bacterial RecA filament. Science, 1993, 259, 1896-1899.	6.0	658
82	A chicken RAD51 homologue is expressed at high levels in lymphoid and reproductive organs. Nucleic Acids Research, 1993, 21, 1577-1580.	6.5	127
83	RecA-like Recombination Proteins in Eukaryotes: Functions and Structures of RAD51 Genes. Cold Spring Harbor Symposia on Quantitative Biology, 1993, 58, 567-576.	2.0	112
84	Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell, 1992, 69, 457-470.	13.5	1,249
85	Functional structures of the RecA protein found by chimera analysis. Journal of Molecular Biology, 1992, 226, 651-660.	2.0	37