Julien Brillault

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9195775/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison between Colistin Sulfate Dry Powder and Solution for Pulmonary Delivery. Pharmaceutics, 2020, 12, 557.	4.5	6
2	Control of the Lung Residence Time of Highly Permeable Molecules after Nebulization: Example of the Fluoroquinolones. Pharmaceutics, 2020, 12, 387.	4.5	12
3	Sustained-release microparticle dry powders of chloramphenicol palmitate or thiamphenicol palmitate prodrugs for lung delivery as aerosols. European Journal of Pharmaceutical Sciences, 2019, 138, 105028.	4.0	13
4	Pulmonary Pharmacokinetics of Oseltamivir Carboxylate in Rats after Nebulization or Intravenous Administration of Its Prodrug, Oseltamivir Phosphate. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	1
5	Active Mediated Transport of Chloramphenicol and Thiamphenicol in a Calu-3 Lung Epithelial Cell Model. Journal of Pharmaceutical Sciences, 2018, 107, 1178-1184.	3.3	8
6	Biopharmaceutical Characterization of Nebulized Antimicrobial Agents in Rats. 4. Aztreonam. Antimicrobial Agents and Chemotherapy, 2016, 60, 3196-3198.	3.2	17
7	Ciprofloxacin-Loaded Inorganic–Organic Composite Microparticles To Treat Bacterial Lung Infection. Molecular Pharmaceutics, 2016, 13, 100-112.	4.6	30
8	Biopharmaceutical Characterization of Nebulized Antimicrobial Agents in Rats: 3. Tobramycin. Antimicrobial Agents and Chemotherapy, 2015, 59, 6646-6647.	3.2	44
9	Biopharmaceutical Characterization of Nebulized Antimicrobial Agents in Rats: 1. Ciprofloxacin, Moxifloxacin, and Grepafloxacin. Antimicrobial Agents and Chemotherapy, 2014, 58, 3942-3949.	3.2	33
10	Aerosol Therapy with Colistin Methanesulfonate: a Biopharmaceutical Issue Illustrated in Rats. Antimicrobial Agents and Chemotherapy, 2010, 54, 3702-3707.	3.2	587
11	Relative Contributions of Active Mediated Transport and Passive Diffusion of Fluoroquinolones with Various Lipophilicities in a Calu-3 Lung Epithelial Cell Model. Antimicrobial Agents and Chemotherapy, 2010, 54, 543-545.	3.2	35
12	P-Glycoprotein-Mediated Transport of Moxifloxacin in a Calu-3 Lung Epithelial Cell Model. Antimicrobial Agents and Chemotherapy, 2009, 53, 1457-1462.	3.2	55
13	Formulation of rifampicin–cyclodextrin complexes for lung nebulization. Journal of Controlled Release, 2008, 129, 93-99.	9.9	84
14	Hypoxia effects on cell volume and ion uptake of cerebral microvascular endothelial cells. American Journal of Physiology - Cell Physiology, 2008, 294, C88-C96.	4.6	54
15	VEGF-Induced BBB Permeability is Associated with an MMP-9 Activity Increase in Cerebral ischemia: Both Effects Decreased by ANG-1. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 1491-1504.	4.3	172
16	Moderate-to-severe ischemic conditions increase activity and phosphorylation of the cerebral microvascular endothelial cell Na+-K+-Clâ~' cotransporter. American Journal of Physiology - Cell Physiology, 2005, 289, C1492-C1501.	4.6	75
17	Tissue-Type Plasminogen Activator Crosses the Intact Blood-Brain Barrier by Low-Density Lipoprotein Receptor–Related Protein-Mediated Transcytosis. Circulation, 2005, 111, 2241-2249.	1.6	166
18	Oxygen Glucose Deprivation Switches the Transport of tPA Across the Blood–Brain Barrier From an LRP-Dependent to an Increased LRP-Independent Process. Stroke, 2005, 36, 1059-1064.	2.0	110

#	Article	IF	CITATIONS
19	Intercommunications between brain capillary endothelial cells and glial cells increase the transcellular permeability of the blood-brain barrier during ischaemia. Journal of Neurochemistry, 2002, 83, 807-817.	3.9	73
20	Prediction of drug transport through the blood-brain barrier in vivo: a comparison between two in vitro cell models. Pharmaceutical Research, 2002, 19, 976-981.	3.5	150