David Pilliod

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9195696/publications.pdf

Version: 2024-02-01

71685 76326 6,459 101 40 76 citations h-index g-index papers 113 113 113 5725 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Critical considerations for the application of environmental <scp>DNA</scp> methods to detect aquatic species. Methods in Ecology and Evolution, 2016, 7, 1299-1307.	5.2	684
2	Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70, 1123-1130.	1.4	444
3	Molecular Detection of Vertebrates in Stream Water: A Demonstration Using Rocky Mountain Tailed Frogs and Idaho Giant Salamanders. PLoS ONE, 2011, 6, e22746.	2.5	397
4	Factors influencing detection of <scp>eDNA</scp> from a streamâ€dwelling amphibian. Molecular Ecology Resources, 2014, 14, 109-116.	4.8	358
5	Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Molecular Ecology, 2005, 14, 483-496.	3.9	305
6	Characterizing the distribution of an endangered salmonid using environmental DNA analysis. Biological Conservation, 2015, 183, 29-37.	4.1	243
7	Moving environmental DNA methods from concept to practice for monitoring aquatic macroorganisms. Biological Conservation, 2015, 183, 1-3.	4.1	215
8	Quantitative evidence for the effects of multiple drivers on continental-scale amphibian declines. Scientific Reports, 2016, 6, 25625.	3.3	196
9	Landscape genetics of high mountain frog metapopulations. Molecular Ecology, 2010, 19, 3634-3649.	3.9	190
10	Longâ€ŧerm effects of seeding after wildfire on vegetation in Great Basin shrubland ecosystems. Journal of Applied Ecology, 2014, 51, 1414-1424.	4.0	181
11	Fire and amphibians in North America. Forest Ecology and Management, 2003, 178, 163-181.	3.2	139
12	Refining the cheatgrass–fire cycle in the Great Basin: Precipitation timing and fine fuel composition predict wildfire trends. Ecology and Evolution, 2017, 7, 8126-8151.	1.9	129
13	Seasonal migration of Columbia spotted frogs (Rana luteiventris) among complementary resources in a high mountain basin. Canadian Journal of Zoology, 2002, 80, 1849-1862.	1.0	110
14	Local and Landscape Effects of Introduced Trout on Amphibians in Historically Fishless Watersheds. Ecosystems, 2001, 4, 322-333.	3.4	103
15	Effects of Amphibian Chytrid Fungus on Individual Survival Probability in Wild Boreal Toads. Conservation Biology, 2010, 24, 1259-1267.	4.7	102
16	Compensatory effects of recruitment and survival when amphibian populations are perturbed by disease. Journal of Applied Ecology, 2011, 48, 873-879.	4.0	97
17	Quantifying restoration effectiveness using multiâ€scale habitat models: implications for sageâ€grouse in the Great Basin. Ecosphere, 2014, 5, 1-32.	2.2	96
18	Seventy-Five Years of Vegetation Treatments on Public Rangelands in the Great Basin of North America. Rangelands, 2017, 39, 1-9.	1.9	91

#	Article	IF	CITATIONS
19	Distribution and environmental limitations of an amphibian pathogen in the Rocky Mountains, USA. Biological Conservation, 2008, 141, 1484-1492.	4.1	89
20	Quantifying climate sensitivity and climate-driven change in North American amphibian communities. Nature Communications, 2018, 9, 3926.	12.8	79
21	Assessing the Consequences of Nonnative Trout in Headwater Ecosystems in Western North America. Fisheries, 2004, 29, 18-26.	0.8	78
22	Adapting management to a changing world: Warm temperatures, dry soil, and interannual variability limit restoration success of a dominant woody shrub in temperate drylands. Global Change Biology, 2018, 24, 4972-4982.	9.5	78
23	Prescribed fires as ecological surrogates for wildfires: A stream and riparian perspective. Forest Ecology and Management, 2010, 259, 893-903.	3.2	77
24	Estimating vegetation biomass and cover across large plots in shrub and grass dominated drylands using terrestrial lidar and machine learning. Ecological Indicators, 2018, 84, 793-802.	6.3	74
25	Thresholds and hotspots for shrub restoration following a heterogeneous megafire. Landscape Ecology, 2018, 33, 1177-1194.	4.2	68
26	Weather-Centric Rangeland Revegetation Planning. Rangeland Ecology and Management, 2018, 71, 1-11.	2.3	62
27	Transient population dynamics impede restoration and may promote ecosystem transformation after disturbance. Ecology Letters, 2019, 22, 1357-1366.	6.4	61
28	Landsat 8 and ICESat-2: Performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass. Remote Sensing of Environment, 2016, 185, 233-242.	11.0	60
29	Heterogeneous responses of temperate-zone amphibian populations to climate change complicates conservation planning. Scientific Reports, 2017, 7, 17102.	3.3	56
30	Lidar Aboveground Vegetation Biomass Estimates in Shrublands: Prediction, Uncertainties and Application to Coarser Scales. Remote Sensing, 2017, 9, 903.	4.0	54
31	Survey of Beaver-related Restoration Practices in Rangeland Streams of the Western USA. Environmental Management, 2018, 61, 58-68.	2.7	54
32	An analytical framework for estimating aquatic species density from environmental <scp>DNA</scp> . Ecology and Evolution, 2018, 8, 3468-3477.	1.9	52
33	Longâ€term trends in restoration and associated land treatments in the southwestern United States. Restoration Ecology, 2018, 26, 311-322.	2.9	49
34	Bioaccumulation trends of arsenic and antimony in a freshwater ecosystem affected by mine drainage. Environmental Chemistry, $2016, 13, 149$.	1.5	48
35	Challenges of Establishing Big Sagebrush (Artemisia tridentata) in Rangeland Restoration: Effects of Herbicide, Mowing, Whole-Community Seeding, and Sagebrush Seed Sources. Rangeland Ecology and Management, 2015, 68, 432-435.	2.3	47
36	Nonâ€native salmonids affect amphibian occupancy at multiple spatial scales. Diversity and Distributions, 2010, 16, 959-974.	4.1	44

#	Article	IF	Citations
37	The ecological uncertainty of wildfire fuel breaks: examples from the sagebrush steppe. Frontiers in Ecology and the Environment, 2019, 17, 279-288.	4.0	43
38	Fire, flow and dynamic equilibrium in stream macroinvertebrate communities. Freshwater Biology, 2010, 55, 299-314.	2.4	42
39	Pattern and process of prescribed fires influence effectiveness at reducing wildfire severity in dry coniferous forests. Forest Ecology and Management, 2012, 276, 174-184.	3.2	42
40	Roles of Patch Characteristics, Drought Frequency, and Restoration in Longâ€Term Trends of a Widespread Amphibian. Conservation Biology, 2013, 27, 1410-1420.	4.7	42
41	Performance of Quantitative Vegetation Sampling Methods Across Gradients of Cover in Great Basin Plant Communities. Rangeland Ecology and Management, 2013, 66, 634-647.	2.3	39
42	Effects of climate change on habitat and connectivity for populations of a vulnerable, endemic salamander in Iran. Global Ecology and Conservation, 2019, 19, e00637.	2.1	39
43	Index for Characterizing Post-Fire Soil Environments in Temperate Coniferous Forests. Forests, 2012, 3, 445-466.	2.1	36
44	Assessing the effectiveness of riparian restoration projects using Landsat and precipitation data from the cloud-computing application ClimateEngine.org. Ecological Engineering, 2018, 120, 432-440.	3.6	36
45	Diverse aging rates in ectothermic tetrapods provide insights for the evolution of aging and longevity. Science, 2022, 376, 1459-1466.	12.6	34
46	Persistence at distributional edges: Columbia spotted frog habitat in the arid Great Basin, <scp>USA</scp> . Ecology and Evolution, 2015, 5, 3704-3724.	1.9	32
47	Effects of changing climate on aquatic habitat and connectivity for remnant populations of a wideâ€ranging frog species in an arid landscape. Ecology and Evolution, 2015, 5, 3979-3994.	1.9	31
48	Saprolegniaceae identified on amphibian eggs throughout the Pacific Northwest, USA, by internal transcribed spacer sequences and phylogenetic analysis. Mycologia, 2008, 100, 171-180.	1.9	28
49	A National-Scale Assessment of Mercury Bioaccumulation in United States National Parks Using Dragonfly Larvae As Biosentinels through a Citizen-Science Framework. Environmental Science & Emp; Technology, 2020, 54, 8779-8790.	10.0	27
50	Bridging the research-management gap: landscape science in practice on public lands in the western United States. Landscape Ecology, 2020, 35, 545-560.	4.2	24
51	Saprolegniaceae identified on amphibian eggs throughout the Pacific Northwest, USA, by internal transcribed spacer sequences and phylogenetic analysis. Mycologia, 2008, 100, 171-180.	1.9	23
52	Amphibian Responses to Wildfire in the Western United States: Emerging Patterns from Short-Term Studies. Fire Ecology, 2011, 7, 129-144.	3.0	23
53	Regional variation in drivers of connectivity for two frog species (<i>Rana pretiosa</i> and) Tj ETQq1 1 0.784314	ł rgBT /Ov	erlogk 10 TE
54	Postfire growth of seeded and planted big sagebrush—strategic designs for restoring greater sageâ€grouse nesting habitat. Restoration Ecology, 2020, 28, 1495-1504.	2.9	23

#	Article	IF	CITATIONS
55	Reptiles Under the Conservation Umbrella of the Greater Sageâ€Grouse. Journal of Wildlife Management, 2020, 84, 478-491.	1.8	23
56	Adding invasive species biosurveillance to the U.S. Geological Survey streamgage network. Ecosphere, 2019, 10, e02843.	2.2	22
57	Role of habitat complexity in predator–prey dynamics between an introduced fish and larval Long-toed Salamanders (<i>Ambystoma macrodactylum</i>). Canadian Journal of Zoology, 2016, 94, 243-249.	1.0	21
58	Managing habitat to slow or reverse population declines of the Columbia spotted frog in the Northern Great Basin. Journal of Wildlife Management, 2015, 79, 579-590.	1.8	20
59	Occupancy and abundance of predator and prey: implications of the fireâ€cheatgrass cycle in sagebrush ecosystems. Ecosphere, 2016, 7, e01307.	2.2	20
60	Functional and geographic components of risk for climate sensitive vertebrates in the Pacific Northwest, USA. Biological Conservation, 2018, 228, 183-194.	4.1	20
61	A Soil Burn Severity Index for Understanding Soil-fire Relations in Tropical Forests. Ambio, 2008, 37, 563-568.	5.5	19
62	Soil characteristics are associated with gradients of big sagebrush canopy structure after disturbance. Ecosphere, 2019, 10, e02780.	2.2	19
63	Cannot see the random forest for the decision trees: selecting predictive models for restoration ecology. Restoration Ecology, 2019, 27, 1053-1063.	2.9	19
64	Small-scale water deficits after wildfires create long-lasting ecological impacts. Environmental Research Letters, 2020, 15, 044001.	5.2	19
65	TAXONOMIC VARIATION IN OVIPOSITION BY TAILED FROGS (ASCAPHUS SPP). Northwestern Naturalist, 2006, 87, 87-97.	0.4	18
66	Fuel Reduction Management Practices in Riparian Areas of the Western USA. Environmental Management, 2010, 46, 91-100.	2.7	18
67	Great Expectations: Deconstructing the Process Pathways Underlying Beaver-Related Restoration. BioScience, 2021, 71, 249-267.	4.9	18
68	Preâ€fire vegetation drives postâ€fire outcomes in sagebrush ecosystems: evidence from field and remote sensing data. Ecosphere, 2019, 10, e02929.	2.2	17
69	Genomic signatures of thermal adaptation are associated with clinal shifts of life history in a broadly distributed frog. Journal of Animal Ecology, 2022, 91, 1222-1238.	2.8	17
70	Protecting restoration investments from the cheatgrassâ€fire cycle in sagebrush steppe. Conservation Science and Practice, 2021, 3, e508.	2.0	17
71	Appropriate Sample Sizes for Monitoring Burned Pastures in Sagebrush Steppe: How Many Plots are Enough, and Can One Size Fit All?. Rangeland Ecology and Management, 2018, 71, 721-726.	2.3	16
72	A roundâ€robin evaluation of the repeatability and reproducibility of environmental DNA assays for dreissenid mussels. Environmental DNA, 2020, 2, 446-459.	5.8	16

#	Article	IF	Citations
73	Thermal conditions predict intraspecific variation in senescence rate in frogs and toads. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,.$	7.1	16
74	Adaptive monitoring in support of adaptive management in rangelands. Rangelands, 2022, 44, 1-7.	1.9	15
75	Integration of eDNAâ€Based Biological Monitoring within the U.S. Geological Survey's National Streamgage Network. Journal of the American Water Resources Association, 2019, 55, 1505-1518.	2.4	14
76	Extreme Arsenic and Antimony Uptake and Tolerance in Toad Tadpoles during Development in Highly Contaminated Wetlands. Environmental Science & Eamp; Technology, 2020, 54, 7983-7991.	10.0	13
77	From satellites to frogs: Quantifying ecohydrological change, drought mitigation, and population demography in desert meadows. Science of the Total Environment, 2021, 758, 143632.	8.0	12
78	Ecosystem Engineering of Harvester Ants: Effects on Vegetation in a Sagebrush-Steppe Ecosystem. Western North American Naturalist, 2016, 76, 82-89.	0.4	11
79	It's complicated … environmental DNA as a predictor of trout and char abundance in streams. Canadian Journal of Fisheries and Aquatic Sciences, 2021, 78, 422-432.	1.4	10
80	Lack of Significant Changes in the Herpetofauna of Theodore Roosevelt National Park, North Dakota, Since the 1920s. American Midland Naturalist, 2005, 154, 423-432.	0.4	9
81	Persistence and extirpation in invaded landscapes: patch characteristics and connectivity determine effects of non-native predatory fish on native salamanders. Biological Invasions, 2013, 15, 671-685.	2.4	9
82	Transition of Vegetation States Positively Affects Harvester Ants in the Great Basin, United States. Rangeland Ecology and Management, 2016, 69, 449-456.	2.3	9
83	Insect communities in big sagebrush habitat are altered by wildfire and postâ€fire restoration seeding. Insect Conservation and Diversity, 2019, 12, 216-230.	3.0	8
84	An Introduction and Practical Guide to Use of the Soil-Vegetation Inventory Method (SVIM) Data. Rangeland Ecology and Management, 2018, 71, 671-680.	2.3	7
85	Illegal killing of nongame wildlife and recreational shooting in conservation areas. Conservation Science and Practice, 2020, 2, e279.	2.0	7
86	A reference system for animal biometrics: Application to the northern leopard frog. , 2014, , .		6
87	Exploring the Use of Environmental DNA to Determine the Species of Salmon Redds. North American Journal of Fisheries Management, 2017, 37, 943-950.	1.0	6
88	Harvester ant seed removal in an invaded sagebrush ecosystem: Implications for restoration. Ecology and Evolution, 2020, 10, 13731-13741.	1.9	6
89	Leveraging rangeland monitoring data for wildlife: From concept to practice. Rangelands, 2022, 44, 87-98.	1.9	6
90	Importance of local weather and environmental gradients on demography of a broadly distributed temperate frog. Ecological Indicators, 2022, 136, 108648.	6.3	6

#	Article	IF	CITATIONS
91	Hyperspectral Analysis of Columbia Spotted Frog Habitat. Journal of Wildlife Management, 2010, 74, 1387-1394.	1.8	5
92	Larval longâ€toed salamanders incur nonconsumptive effects in the presence of nonnative trout. Ecosphere, 2016, 7, e01258.	2.2	5
93	Methodological considerations of terrestrial laser scanning for vegetation monitoring in the sagebrush steppe. Environmental Monitoring and Assessment, 2017, 189, 578.	2.7	5
94	Sampling animal sign in heterogeneous environments: How much is enough?. Journal of Arid Environments, 2015, 119, 51-55.	2.4	4
95	Spatiotemporal dynamics of insect pollinator communities in sagebrush steppe associated with weather and vegetation. Global Ecology and Conservation, 2021, 29, e01691.	2.1	4
96	Elevating human dimensions of amphibian and reptile conservation, a <scp>USA</scp> perspective. Conservation Science and Practice, 2022, 4, .	2.0	4
97	Clark's Nutcracker (Nucifraga columbiana) Predation on Tadpoles of the Columbia Spotted Frog (Rana) Tj ETQq1	1 0.7843	14 _g rgBT /Ove
98	Hyperspectral Analysis of Columbia Spotted Frog Habitat. Journal of Wildlife Management, 2010, 74, 1387-1394.	1.8	3
99	Corrigendum to "Distribution and environmental limitations of an amphibian pathogen in the Rocky Mountains, USA―[Biological Conservation 141 (2008) 1484–1492]. Biological Conservation, 2008, 141, 3170.	4.1	2
100	Stream Restoration Is Influenced by Details of Engineered Habitats at a Headwater Mine Site. Diversity, 2021, 13, 48.	1.7	2
101	Hydroclimatic Conditions, Wildfire, and Species Assemblages Influence Co-Occurrence of Bull Trout and Tailed Frogs in Northern Rocky Mountain Streams. Water (Switzerland), 2022, 14, 1162.	2.7	2