Jonathan Soboloff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/91952/publications.pdf Version: 2024-02-01

IONATHAN SOBOLOFE

#	Article	IF	CITATIONS
1	Control of STIM and Orai function by post-translational modifications. Cell Calcium, 2022, 103, 102544.	1.1	11
2	The function of the calcium channel Orai1 in osteoclast development. FASEB Journal, 2021, 35, e21653.	0.2	4
3	GluA2 overexpression in oligodendrocyte progenitors promotes postinjury oligodendrocyte regeneration. Cell Reports, 2021, 35, 109147.	2.9	19
4	ERK2 Substrate Binding Domains Perform Opposing Roles in Pathogenesis of a JAK2V617F-Driven Myeloproliferative Neoplasm. Blood, 2021, 138, 2547-2547.	0.6	2
5	Palmitoylation: A new mechanism for control of NCX1 function. Cell Calcium, 2020, 91, 102254.	1.1	2
6	Ca2+ as a therapeutic target in cancer. Advances in Cancer Research, 2020, 148, 233-317.	1.9	16
7	Suppression of Ca ²⁺ signals by <scp>EGR</scp> 4 controls Th1 differentiation and antiâ€cancer immunity <i>inÂvivo</i> . EMBO Reports, 2020, 21, e48904.	2.0	17
8	Mitochondrial pyruvate and fatty acid flux modulate MICU1-dependent control of MCU activity. Science Signaling, 2020, 13, .	1.6	48
9	The Ca ²⁺ export pump PMCA clears near-membrane Ca ²⁺ to facilitate store-operated Ca ²⁺ entry and NFAT activation. Science Signaling, 2019, 12, .	1.6	27
10	The roles of Orai and Stim in bone health and disease. Cell Calcium, 2019, 81, 51-58.	1.1	14
11	STIM1 structure-function and downstream signaling pathways. Cell Calcium, 2019, 80, 101-102.	1.1	3
12	Acetylation of SERCA2a, Another Target for Heart Failure Treatment?. Circulation Research, 2019, 124, 1285-1287.	2.0	12
13	EGR-mediated control of STIM expression and function. Cell Calcium, 2019, 77, 58-67.	1.1	9
14	<scp>STIM</scp> 1 (c) <scp>AMP</scp> s up melanogenesis. EMBO Journal, 2018, 37, .	3.5	0
15	Interferon-Î ³ Signaling in Melanocytes and Melanoma Cells Regulates Expression of CTLA-4. Cancer Research, 2018, 78, 436-450.	0.4	96
16	Hold the door: hPMCA1/neuroplastin interactions regulate Ca2+-binding site accessibility. Cell Calcium, 2018, 76, 135-136.	1.1	7
17	T cell activation triggers reversible inosine-5′-monophosphate dehydrogenase assembly. Journal of Cell Science, 2018, 131,	1.2	37
18	Stim1 Deletion Synthetically Rescues Ezh2-Null Effector T Cells and Alloimmunity. Blood, 2018, 132, 4533-4533.	0.6	0

#	Article	IF	CITATIONS
19	Mitochondrial Ca2+ Uniporter Is a Mitochondrial Luminal Redox Sensor that Augments MCU Channel Activity. Molecular Cell, 2017, 65, 1014-1028.e7.	4.5	179
20	Role of STIM1 (Stromal Interaction Molecule 1) in Hypertrophy-Related Contractile Dysfunction. Circulation Research, 2017, 121, 125-136.	2.0	36
21	Ezh2 phosphorylation state determines its capacity to maintain CD8+ T memory precursors for antitumor immunity. Nature Communications, 2017, 8, 2125.	5.8	99
22	Sterol hindrance of Orai activation. Science Signaling, 2016, 9, fs4.	1.6	3
23	Novel STIM1â€dependent control of Ca ²⁺ clearance regulates NFAT activity during Tâ€cell activation. FASEB Journal, 2016, 30, 3878-3886.	0.2	14
24	The heterogeneity of store-operated calcium entry in melanoma. Science China Life Sciences, 2016, 59, 764-769.	2.3	14
25	Suppression of arthritis-induced bone erosion by a CRAC channel antagonist. RMD Open, 2016, 2, e000093.	1.8	8
26	Cocaine inhibits store-operated Ca2+ entry in brain microvascular endothelial cells: critical role for sigma-1 receptors. Biochemical Journal, 2016, 473, 1-5.	1.7	39
27	Defining Post as a Modulator of STIM1 Function during T Cell Activation. Biophysical Journal, 2015, 108, 128a.	0.2	0
28	Novel Protein Kinase C-Mediated Control of Orai1 Function in Invasive Melanoma. Molecular and Cellular Biology, 2015, 35, 2790-2798.	1.1	42
29	STIMATE reveals a STIM1 transitional state. Nature Cell Biology, 2015, 17, 1232-1234.	4.6	19
30	Neuronal STIMulation at Rest. Science Signaling, 2014, 7, pe18.	1.6	13
31	Distinct Orai-Coupling Domains in Stim1 and Stim2 Define the Orai-Activating Site. Biophysical Journal, 2014, 106, 314a.	0.2	0
32	Distinct Orai-coupling domains in STIM1 and STIM2 define the Orai-activating site. Nature Communications, 2014, 5, 3183.	5.8	140
33	Multifaceted roles of STIM proteins. Pflugers Archiv European Journal of Physiology, 2013, 465, 1383-1396.	1.3	32
34	The critical role of STIM1-dependent Ca2+ signalling during T-cell development and activation. International Journal of Biochemistry and Cell Biology, 2013, 45, 2491-2495.	1.2	7
35	Differential Control of STIM1 Expression and Function by EGR Family Members in T Cells. Biophysical Journal, 2013, 104, 100a.	0.2	0
36	Aberrant Store-Operated Calcium Entry (SOCE) in Invasive Melanoma. Biophysical Journal, 2013, 104, 101a.	0.2	0

#	Article	IF	CITATIONS
37	Blockade of NOX2 and STIM1 signaling limits lipopolysaccharide-induced vascular inflammation. Journal of Clinical Investigation, 2013, 123, 887-902.	3.9	163
38	Gene disruption of the calcium channel Orai1 results in inhibition of osteoclast and osteoblast differentiation and impairs skeletal development. Laboratory Investigation, 2012, 92, 1071-1083.	1.7	62
39	Control of Type I Interferon-induced Cell Death by Orai1-mediated Calcium Entry in T Cells. Journal of Biological Chemistry, 2012, 287, 3207-3216.	1.6	19
40	STIM1 is required for attenuation of PMCA-mediated Ca ²⁺ clearance during T-cell activation. EMBO Journal, 2012, 31, 1123-1133.	3.5	87
41	STIM proteins: dynamic calcium signal transducers. Nature Reviews Molecular Cell Biology, 2012, 13, 549-565.	16.1	573
42	Sensing cellular stress through STIM proteins. Nature Chemical Biology, 2011, 7, 488-492.	3.9	37
43	WT1/EGR1-mediated control of STIM1 expression and function in cancer cells. Frontiers in Bioscience - Landmark, 2011, 16, 2402.	3.0	21
44	Transcriptional mechanisms regulating Ca2+ homeostasis. Cell Calcium, 2011, 49, 314-321.	1.1	30
45	The role of calcium release activated calcium channels in osteoclast differentiation. Journal of Cellular Physiology, 2011, 226, 1082-1089.	2.0	44
46	Stimulation of Ca ²⁺ â€channel Orai1/STIM1 by serumâ€and glucocorticoidâ€inducible kinase 1 (SGK1). FASEB Journal, 2011, 25, 2012-2021.	0.2	82
47	S-glutathionylation activates STIM1 and alters mitochondrial homeostasis. Journal of Cell Biology, 2010, 190, 391-405.	2.3	201
48	Wilms Tumor Suppressor 1 (WT1) and Early Growth Response 1 (EGR1) Are Regulators of STIM1 Expression. Journal of Biological Chemistry, 2010, 285, 10591-10596.	1.6	51
49	The Calcium Store Sensor, STIM1, Reciprocally Controls Orai and Ca _V 1.2 Channels. Science, 2010, 330, 105-109.	6.0	309
50	Critical Role for the Calcium-Release Activated Calcium Channel Orai1 In RANKL-Stimulated Osteoclast Formation From Monocytic Cells. Blood, 2010, 116, 928-928.	0.6	1
51	The short N-terminal domains of STIM1 and STIM2 control the activation kinetics of Orai1 channels Journal of Biological Chemistry, 2009, 284, 25459.	1.6	3
52	The Short N-terminal Domains of STIM1 and STIM2 Control the Activation Kinetics of Orai1 Channels. Journal of Biological Chemistry, 2009, 284, 19164-19168.	1.6	97
53	Stim1, an endoplasmic reticulum Ca2+ sensor, negatively regulates 3T3-L1 pre-adipocyte differentiation. Differentiation, 2009, 77, 239-247.	1.0	33
54	Tamoxifen-Inducible Cre-Mediated Calreticulin Excision to Study Mouse Embryonic Stem Cell Differentiation. Stem Cells and Development, 2009, 18, 187-194.	1.1	4

#	Article	IF	CITATIONS
55	STIM protein coupling in the activation of Orai channels. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7391-7396.	3.3	121
56	STIM and Orai: Dynamic Intermembrane Coupling to Control Cellular Calcium Signals. Journal of Biological Chemistry, 2009, 284, 22501-22505.	1.6	107
57	STIM, ORAI AND TRPC CHANNELS IN THE CONTROL OF CALCIUM ENTRY SIGNALS IN SMOOTH MUSCLE. Clinical and Experimental Pharmacology and Physiology, 2008, 35, 1127-1133.	0.9	98
58	Location and Function of STIM1 in the Activation of Ca2+ Entry Signals. Journal of Biological Chemistry, 2008, 283, 26252-26262.	1.6	44
59	STIM2 protein mediates distinct storeâ€dependent and storeâ€independent modes of CRAC channel activation. FASEB Journal, 2008, 22, 752-761.	0.2	140
60	Dynamic Assembly of TRPC1-STIM1-Orai1 Ternary Complex Is Involved in Store-operated Calcium Influx. Journal of Biological Chemistry, 2007, 282, 9105-9116.	1.6	358
61	Role of STIM and Orai proteins in the store-operated calcium signaling pathway. Cell Calcium, 2007, 42, 173-182.	1.1	162
62	STIM1 has a plasma membrane role in the activation of store-operated Ca2+ channels. Proceedings of the United States of America, 2006, 103, 4040-4045.	3.3	286
63	STIM2 Is an Inhibitor of STIM1-Mediated Store-Operated Ca2+ Entry. Current Biology, 2006, 16, 1465-1470.	1.8	223
64	CRACM1 Multimers Form the Ion-Selective Pore of the CRAC Channel. Current Biology, 2006, 16, 2073-2079.	1.8	516
65	Calcium signals mediated by STIM and Orai proteins—A new paradigm in inter-organelle communication. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 1161-1168.	1.9	75
66	SIGNAL TRANSDUCTION: Calcium Entry SignalsTrickles and Torrents. Science, 2006, 313, 183-184.	6.0	18
67	A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16586-16591.	3.3	436
68	Inhibition of Ca2+Influx Is Required for Mitochondrial Reactive Oxygen Species-Induced Endoplasmic Reticulum Ca2+Depletion and Cell Death in Leukemia Cells. Molecular Pharmacology, 2006, 70, 1424-1434.	1.0	54
69	Orai1 and STIM Reconstitute Store-operated Calcium Channel Function. Journal of Biological Chemistry, 2006, 281, 20661-20665.	1.6	490
70	Role of Endogenous TRPC6 Channels in Ca2+ Signal Generation in A7r5 Smooth Muscle Cells. Journal of Biological Chemistry, 2005, 280, 39786-39794.	1.6	147
71	A Functional Link between Store-operated and TRPC Channels Revealed by the 3,5-Bis(trifluoromethyl)pyrazole Derivative, BTP2. Journal of Biological Chemistry, 2005, 280, 10997-11006.	1.6	177
72	Sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) gene silencing and remodeling of the Ca2+ signaling mechanism in cardiac myocytes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16683-16688.	3.3	112

#	Article	IF	CITATIONS
73	Calcium entry mediated by SOCs and TRP channels: variations and enigma. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1742, 9-20.	1.9	91
74	Mast cells stimulated by membrane-bound, but not soluble, steel factor are dependent on phospholipase C activation. Cellular and Molecular Life Sciences, 2003, 60, 759-766.	2.4	22
75	Sustained ER Ca2+ Depletion Suppresses Protein Synthesis and Induces Activation-enhanced Cell Death in Mast Cells. Journal of Biological Chemistry, 2002, 277, 13812-13820.	1.6	83
76	Sensitivity of myeloid leukemia cells to calcium influx blockade. Experimental Hematology, 2002, 30, 1219-1226.	0.2	38
77	Acyl Chain Length-Specific Ceramide-Induced Changes in Intracellular Ca2+ Concentration and Progesterone Production Are Not Regulated by Tumor Necrosis Factor α in Hen Granulosa Cells1. Biology of Reproduction, 1999, 60, 262-271.	1.2	12
78	Influence of Tumor Necrosis Factor Alpha on Intracellular Ca2+ in Hen Granulosa Cells in Vitro during Follicular Development1. Biology of Reproduction, 1995, 53, 546-552.	1.2	15
79	Influence of the Muscarinic Agonist Carbachol on Intracellular Ca2+ in Chicken Granulosa Cells: I. Dependence on Follicular Maturation1. Biology of Reproduction, 1995, 52, 721-728.	1.2	6