
Linda P Lowes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9195058/publications.pdf Version: 2024-02-01

LINDA PLOWES

#	Article	IF	CITATIONS
1	Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. New England Journal of Medicine, 2017, 377, 1713-1722.	27.0	1,642
2	Eteplirsen for the treatment of Duchenne muscular dystrophy. Annals of Neurology, 2013, 74, 637-647.	5.3	630
3	Longitudinal effect of eteplirsen versus historical control on ambulation in <scp>D</scp> uchenne muscular dystrophy. Annals of Neurology, 2016, 79, 257-271.	5.3	428
4	Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet, The, 2017, 390, 1489-1498.	13.7	365
5	Assessment of Systemic Delivery of rAAVrh74.MHCK7.micro-dystrophin in Children With Duchenne Muscular Dystrophy. JAMA Neurology, 2020, 77, 1122.	9.0	226
6	A Phase 1/2a Follistatin Gene Therapy Trial for Becker Muscular Dystrophy. Molecular Therapy, 2015, 23, 192-201.	8.2	193
7	Health outcomes in spinal muscular atrophy type 1 following AVXSâ€101 gene replacement therapy. Pediatric Pulmonology, 2019, 54, 179-185.	2.0	142
8	Five-Year Extension Results of the Phase 1 START Trial of Onasemnogene Abeparvovec in Spinal Muscular Atrophy. JAMA Neurology, 2021, 78, 834.	9.0	135
9	Impact of Age and Motor Function in a Phase 1/2A Study of Infants With SMA Type 1 Receiving Single-Dose Gene Replacement Therapy. Pediatric Neurology, 2019, 98, 39-45.	2.1	128
10	AVXS-101 (Onasemnogene Abeparvovec) for SMA1: Comparative Study with a Prospective Natural History Cohort. Journal of Neuromuscular Diseases, 2019, 6, 307-317.	2.6	124
11	Follistatin Gene Therapy for Sporadic Inclusion Body Myositis Improves Functional Outcomes. Molecular Therapy, 2017, 25, 870-879.	8.2	84
12	Gene Therapy for Spinal Muscular Atrophy: Safety and Early Outcomes. Pediatrics, 2020, 146, .	2.1	82
13	Motor and cognitive assessment of infants and young boys with Duchenne Muscular Dystrophy: results from the Muscular Dystrophy Association DMD Clinical Research Network. Neuromuscular Disorders, 2013, 23, 529-539.	0.6	79
14	Association Study of Exon Variants in the NF-κB and TGFβ Pathways Identifies CD40 as a Modifier of Duchenne Muscular Dystrophy. American Journal of Human Genetics, 2016, 99, 1163-1171.	6.2	71
15	Eteplirsen Treatment Attenuates Respiratory Decline in Ambulatory and Non-Ambulatory Patients with Duchenne Muscular Dystrophy. Journal of Neuromuscular Diseases, 2019, 6, 213-225.	2.6	68
16	Long-term treatment with eteplirsen in nonambulatory patients with Duchenne muscular dystrophy. Medicine (United States), 2019, 98, e15858.	1.0	61
17	Outcome reliability in nonâ€Ambulatory Boys/Men with duchenne muscular dystrophy. Muscle and Nerve, 2015, 51, 522-532.	2.2	60
18	â€~Learn From Every Patient': implementation and early results of a learning health system. Developmental Medicine and Child Neurology, 2017, 59, 183-191.	2.1	59

LINDA P LOWES

#	Article	IF	CITATIONS
19	Natural history of Type 2 and 3 spinal muscular atrophy: 2â€year NatHisâ€SMA study. Annals of Clinical and Translational Neurology, 2021, 8, 359-373.	3.7	58
20	Long-Term Pulmonary Function in Duchenne Muscular Dystrophy: Comparison of Eteplirsen-Treated Patients to Natural History. Journal of Neuromuscular Diseases, 2018, 5, 47-58.	2.6	51
21	Gene Delivery for Limb-Girdle Muscular Dystrophy Type 2D by Isolated Limb Infusion. Human Gene Therapy, 2019, 30, 794-801.	2.7	34
22	Twiceâ€weekly glucocorticosteroids in infants and young boys with Duchenne muscular dystrophy. Muscle and Nerve, 2019, 59, 650-657.	2.2	32
23	First Regulatory Qualification of a Novel Digital Endpoint in Duchenne Muscular Dystrophy: A Multi-Stakeholder Perspective on the Impact for Patients and for Drug Development in Neuromuscular Diseases. Digital Biomarkers, 2021, 5, 183-190.	4.4	32
24	Pilot Study of the Efficacy of Constraint-Induced Movement Therapy for Infants and Toddlers with Cerebral Palsy. Physical and Occupational Therapy in Pediatrics, 2014, 34, 4-21.	1.3	29
25	Clinical trial readiness in non-ambulatory boys and men with duchenne muscular dystrophy: MDA-DMD network follow-up. Muscle and Nerve, 2016, 54, 681-689.	2.2	29
26	Factors associated with caregiver experience in families with a child with cerebral palsy. Journal of Pediatric Rehabilitation Medicine, 2016, 9, 65-72.	0.5	28
27	Knee extensor strength exhibits potential to predict function in sporadic inclusionâ€body myositis. Muscle and Nerve, 2012, 45, 163-168.	2.2	25
28	Proof of Concept of the Ability of the Kinect to Quantify Upper Extremity Function in Dystrophinopathy. PLOS Currents, 2013, 5, .	1.4	25
29	Comparison of Long-term Ambulatory Function in Patients with Duchenne Muscular Dystrophy Treated with Eteplirsen and Matched Natural History Controls. Journal of Neuromuscular Diseases, 2021, 8, 469-479.	2.6	22
30	Structure- and Sampling-Adaptive Gait Balance Symmetry Estimation Using Footstep-Induced Structural Floor Vibrations. Journal of Engineering Mechanics - ASCE, 2021, 147, .	2.9	19
31	Development of the sporadic inclusion body myositis physical functioning assessment. Muscle and Nerve, 2016, 54, 653-657.	2.2	17
32	Assessing Dysferlinopathy Patients Over Three Years With a New Motor Scale. Annals of Neurology, 2021, 89, 967-978.	5.3	17
33	Correlation of knee strength to functional outcomes in becker muscular dystrophy. Muscle and Nerve, 2013, 47, 550-554.	2.2	16
34	The 100-meter timed test: Normative data in healthy males and comparative pilot outcome data for use in Duchenne muscular dystrophy clinical trials. Neuromuscular Disorders, 2017, 27, 452-457.	0.6	16
35	MD-Vibe. , 2020, , .		16
36	Reliability and validity of activeâ€seated: An outcome in dystrophinopathy. Muscle and Nerve, 2015, 52, 356-362.	2.2	15

LINDA P LOWES

#	Article	IF	CITATIONS
37	Natural History of Steroid-Treated Young Boys With Duchenne Muscular Dystrophy Using the NSAA, 100m, and Timed Functional Tests. Pediatric Neurology, 2020, 113, 15-20.	2.1	14
38	Modeling functional decline over time in sporadic inclusion body myositis. Muscle and Nerve, 2017, 55, 526-531.	2.2	12
39	Motor Function Test Reliability During the NeuroNEXT Spinal Muscular Atrophy Infant Biomarker Study. Journal of Neuromuscular Diseases, 2018, 5, 509-521.	2.6	12
40	Psychometric validation of a patient-reported measure of physical functioning in sporadic inclusion body myositis. Muscle and Nerve, 2016, 54, 658-665.	2.2	11
41	"Learn From Every Patientâ€: How a Learning Health System Can Improve Patient Care. Pediatric Quality & Safety, 2018, 3, e100.	0.8	11
42	ACTIVE (Ability Captured Through Interactive Video Evaluation) workspace volume video game to quantify meaningful change in spinal muscular atrophy. Developmental Medicine and Child Neurology, 2020, 62, 303-309.	2.1	10
43	Emerging therapeutic options for sporadic inclusion body myositis. Therapeutics and Clinical Risk Management, 2015, 11, 1459.	2.0	9
44	Use of the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND) in X-Linked Myotubular Myopathy: Content Validity and Psychometric Performance. Journal of Neuromuscular Diseases, 2021, 8, 63-77.	2.6	9
45	Remote Delivery of Motor Function Assessment and Training for Clinical Trials in Neuromuscular Disease: A Response to the COVID-19 Clobal Pandemic. Frontiers in Genetics, 2021, 12, 735538.	2.3	9
46	Reliability and construct validity of the Duchenne Video Assessment. Muscle and Nerve, 2021, 64, 180-189.	2.2	7
47	Meta-analyses of deflazacort versus prednisone/prednisolone in patients with nonsense mutation Duchenne muscular dystrophy. Journal of Comparative Effectiveness Research, 2021, 10, 1337-1347.	1.4	6
48	Validity and Reliability of the Neuromuscular Gross Motor Outcome. Pediatric Neurology, 2021, 122, 21-26.	2.1	5
49	Evaluation of Infants with Spinal Muscular Atrophy Type-I Using Convolutional Neural Networks. Lecture Notes in Computer Science, 2016, , 495-507.	1.3	4
50	Development of Duchenne Video Assessment scorecards to evaluate ease of movement among those with Duchenne muscular dystrophy. PLoS ONE, 2022, 17, e0266845.	2.5	4
51	EFFICACY OF THE STRETCH BAND ANKLE TRACTION TECHNIQUE IN THE TREATMENT OF PEDIATRIC PATIENTS WITH ACUTE ANKLE SPRAINS: A RANDOMIZED CONTROL TRIAL. International Journal of Sports Physical Therapy, 2018, 13, 1-11.	1.3	3
52	Consensus Guidelines for Improving Quality of Assessment and Training for Neuromuscular Diseases. Frontiers in Genetics, 2021, 12, 735936.	2.3	3
53	Patient reported quality of life in limb girdle muscular dystrophy. Neuromuscular Disorders, 2022, 32, 57-64.	0.6	3
54	Comparison of strength testing modalities in dysferlinopathy. Muscle and Nerve, 2022, 66, 159-166.	2.2	3

LINDA P LOWES

#	Article	IF	CITATIONS
55	Gene-Replacement Therapy (GRT) in Spinal Muscular Atrophy Type 1 (SMA1): Long-Term Follow-Up From the Onasemnogene Abeparvovec Phase 1/2 Clinical Trial. Neuropediatrics, 2019, 50, .	0.6	2
56	Functional outcome measures in young, steroid-naÃ⁻ve boys with Duchenne muscular dystrophy. Neuromuscular Disorders, 2022, 32, 460-467.	0.6	2
57	Authors' Response to Evidence to Practice Commentary. Physical and Occupational Therapy in Pediatrics, 2014, 34, 25-29.	1.3	1
58	Prediction of Clinical Outcomes of Spinal Muscular Atrophy Using Motion Tracking Data and Elastic Net Regression. , 2018, , .		1
59	EFFICACY OF THE STRETCH BAND ANKLE TRACTION TECHNIQUE IN THE TREATMENT OF PEDIATRIC PATIENTS WITH ACUTE ANKLE SPRAINS: A RANDOMIZED CONTROL TRIAL. International Journal of Sports Physical Therapy, 2018, 13, 1-11.	1.3	1
60	IP 853. AVXS-101 Phase-1-Gene Therapy Clinical Trial in SMA Type 1: Event-Free Survival and Achievement of Developmental Milestones. Neuropediatrics, 2018, 49, .	0.6	0
61	Systemic Gene Transfer with rAAVrh74.MHCK7.SGCB Increased ï¢-sarcoglycan Expression in Patients with Limb Girdle Muscular Dystrophy Type 2E. Neuropediatrics, 2019, 50, .	0.6	0
62	Spatial, But Not Temporal, Kinematics of Spontaneous Upper Extremity Movements Are Related to Gross and Fine Motor Skill Attainment in Infancy. Journal of Motor Learning and Development, 2022, 10, 41-60.	0.4	0