
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9195036/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interfacial Design of Dendriteâ€Free Zinc Anodes for Aqueous Zincâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 13180-13191.	13.8	727
2	The Threeâ€Dimensional Dendriteâ€Free Zinc Anode on a Copper Mesh with a Zincâ€Oriented Polyacrylamide Electrolyte Additive. Angewandte Chemie - International Edition, 2019, 58, 15841-15847.	13.8	648
3	Advancements and Challenges in Potassium Ion Batteries: A Comprehensive Review. Advanced Functional Materials, 2020, 30, 1909486.	14.9	570
4	Revealing the role of crystal orientation of protective layers for stable zinc anode. Nature Communications, 2020, 11, 3961.	12.8	378
5	MoS ₂ /Graphene Nanosheets from Commercial Bulky MoS ₂ and Graphite as Anode Materials for High Rate Sodiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1702383.	19.5	350
6	Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage. Nano Energy, 2019, 57, 728-736.	16.0	323
7	Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries. Energy Storage Materials, 2019, 23, 233-251.	18.0	279
8	Issues and solutions toward zinc anode in aqueous zincâ€ i on batteries: A mini review. , 2020, 2, 540-560.		225
9	Anion Vacancies Regulating Endows MoSSe with Fast and Stable Potassium Ion Storage. ACS Nano, 2019, 13, 11843-11852.	14.6	210
10	Structure-dependent performance of TiO2/C as anode material for Na-ion batteries. Nano Energy, 2018, 44, 217-227.	16.0	209
11	A novel solvothermal synthesis of Mn3O4/graphene composites for supercapacitors. Electrochimica Acta, 2013, 90, 210-218.	5.2	193
12	Plasmaâ€Induced Amorphous Shell and Deep Cationâ€Site S Doping Endow TiO ₂ with Extraordinary Sodium Storage Performance. Advanced Materials, 2018, 30, e1801013.	21.0	180
13	Co ₃ O ₄ –CeO ₂ /C as a Highly Active Electrocatalyst for Oxygen Reduction Reaction in Al–Air Batteries. ACS Applied Materials & Interfaces, 2016, 8, 34422-34430.	8.0	159
14	1T MoS2 nanosheets with extraordinary sodium storage properties via thermal-driven ion intercalation assisted exfoliation of bulky MoS2. Nano Energy, 2019, 61, 361-369.	16.0	157
15	In-situ formation of hybrid Li3PO4-AlPO4-Al(PO3)3 coating layer on LiNi0.8Co0.1Mn0.1O2 cathode with enhanced electrochemical properties for lithium-ion battery. Chemical Engineering Journal, 2020, 382, 122959.	12.7	149
16	Recent advances and perspectives on vanadium- and manganese-based cathode materials for aqueous zinc ion batteries. Journal of Energy Chemistry, 2021, 59, 134-159.	12.9	142
17	A progressive nucleation mechanism enables stable zinc stripping–plating behavior. Energy and Environmental Science, 2021, 14, 5563-5571.	30.8	141
18	Tuning the Morphologies of MnO/C Hybrids by Space Constraint Assembly of Mn-MOFs for High Performance Li Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 5254-5262.	8.0	129

#	Article	IF	CITATIONS
19	Iron-Doped Cauliflower-Like Rutile TiO ₂ with Superior Sodium Storage Properties. ACS Applied Materials & Interfaces, 2017, 9, 6093-6103.	8.0	125
20	Preparation and characterization of Na-doped LiFePO4/C composites as cathode materials for lithium-ion batteries. Journal of Power Sources, 2010, 195, 4308-4312.	7.8	124
21	Boosting oxygen reduction activity of Fe-N-C by partial copper substitution to iron in Al-air batteries. Applied Catalysis B: Environmental, 2019, 242, 209-217.	20.2	121
22	Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency. Nano Energy, 2019, 64, 103937.	16.0	118
23	Advanced Filter Membrane Separator for Aqueous Zincâ€ion Batteries. Small, 2020, 16, e2003106.	10.0	118
24	The Threeâ€Dimensional Dendriteâ€Free Zinc Anode on a Copper Mesh with a Zincâ€Oriented Polyacrylamide Electrolyte Additive. Angewandte Chemie, 2019, 131, 15988-15994.	2.0	116
25	New Binderâ€Free Metal Phosphide–Carbon Felt Composite Anodes for Sodiumâ€Ion Battery. Advanced Energy Materials, 2018, 8, 1801197.	19.5	113
26	NiCo2O4/N-doped graphene as an advanced electrocatalyst for oxygen reduction reaction. Journal of Power Sources, 2015, 280, 640-648.	7.8	112
27	(NH4)0.5V2O5 nanobelt with good cycling stability as cathode material for Li-ion battery. Journal of Power Sources, 2011, 196, 5645-5650.	7.8	109
28	Annealed NaV3O8 nanowires with good cycling stability as a novel cathode for Na-ion batteries. Journal of Materials Chemistry A, 2014, 2, 3563.	10.3	107
29	Plasma‣trengthened Lithiophilicity of Copper Oxide Nanosheet–Decorated Cu Foil for Stable Lithium Metal Anode. Advanced Science, 2019, 6, 1901433.	11.2	106
30	Simultaneously Regulating the Ion Distribution and Electric Field to Achieve Dendriteâ€Free Zn Anode. Small, 2020, 16, e2000929.	10.0	106
31	Cu–MOF-Derived Cu/Cu ₂ O Nanoparticles and CuN _{<i>x</i>} C _{<i>y</i>} Species to Boost Oxygen Reduction Activity of Ketjenblack Carbon in Al–Air Battery. ACS Sustainable Chemistry and Engineering, 2018, 6, 413-421.	6.7	105
32	Co3O4/Co-N-C modified ketjenblack carbon as an advanced electrocatalyst for Al-air batteries. Journal of Power Sources, 2017, 343, 30-38.	7.8	99
33	Synthesis and electrochemical performance of Li2FeSiO4/carbon/carbon nano-tubes for lithium ion battery. Electrochimica Acta, 2010, 55, 7362-7366.	5.2	95
34	Ultrathin Na1.08V3O8 nanosheets—a novel cathode material with superior rate capability and cycling stability for Li-ion batteries. Energy and Environmental Science, 2012, 5, 6173.	30.8	88
35	Understanding the synergistic effect of alkyl polyglucoside and potassium stannate as advanced hybrid corrosion inhibitor for alkaline aluminum-air battery. Chemical Engineering Journal, 2020, 383, 123162.	12.7	88
36	Defect-rich TiO2-δ nanocrystals confined in a mooncake-shaped porous carbon matrix as an advanced Na ion battery anode. Journal of Power Sources, 2017, 354, 179-188.	7.8	87

#	Article	IF	CITATIONS
37	Na2V6O16·0.14H2O nanowires as a novel anode material for aqueous rechargeable lithium battery with good cycling performance. Journal of Power Sources, 2013, 227, 111-117.	7.8	83
38	Facile and green synthesis of Co3O4 nanoplates/graphene nanosheets composite for supercapacitor. Journal of Solid State Electrochemistry, 2012, 16, 3593-3602.	2.5	82
39	A new cathode material Na2V6O16·xH2O nanowire for lithium ion battery. Journal of Power Sources, 2012, 199, 263-269.	7.8	81
40	Insights into KMnO4 etched N-rich carbon nanotubes as advanced electrocatalysts for Zn-air batteries. Applied Catalysis B: Environmental, 2020, 264, 118537.	20.2	81
41	Comparative transcriptome analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation. Biotechnology for Biofuels, 2013, 6, 72.	6.2	80
42	High-Rate LiTi ₂ (PO ₄) ₃ @N–C Composite via Bi-nitrogen Sources Doping. ACS Applied Materials & Interfaces, 2015, 7, 28337-28345.	8.0	77
43	Aqueous rechargeable lithium batteries using NaV ₆ O ₁₅ nanoflakes as high performance anodes. Journal of Materials Chemistry A, 2014, 2, 12999-13005.	10.3	75
44	N-doped rutile TiO 2 /C with significantly enhanced Na storage capacity for Na-ion batteries. Electrochimica Acta, 2017, 236, 43-52.	5.2	74
45	Electrode–Electrolyte Interfacial Chemistry Modulation for Ultraâ€High Rate Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	74
46	N-doped carbon coated LiTi2(PO4)3 as superior anode using PANi as carbon and nitrogen bi-sources for aqueous lithium ion battery. Electrochimica Acta, 2018, 279, 279-288.	5.2	72
47	Fe/N co-doped carbon materials with controllable structure as highly efficient electrocatalysts for oxygen reduction reaction in Al-air batteries. Energy Storage Materials, 2017, 8, 49-58.	18.0	70
48	A facile annealing strategy for achieving <i>in situ</i> controllable Cu ₂ O nanoparticle decorated copper foil as a current collector for stable lithium metal anodes. Journal of Materials Chemistry A, 2018, 6, 18444-18448.	10.3	70
49	Oxygen Evolution in Overcharged Li <i>_x</i> Ni _{1/3} Co _{1/3} Mn _{1/3} O ₂ Electrode and Its Thermal Analysis Kinetics. Chinese Journal of Chemistry, 2011, 29, 1583-1588.	4.9	69
50	One-step template-free fabrication of mesoporous ZnO/TiO2 hollow microspheres with enhanced photocatalytic activity. Applied Surface Science, 2014, 307, 263-271.	6.1	69
51	Synergistically enhanced oxygen reduction activity of MnO _x –CeO ₂ /Ketjenblack composites. Chemical Communications, 2015, 51, 10123-10126.	4.1	69
52	Adjusting the yolk–shell structure of carbon spheres to boost the capacitive K ⁺ storage ability. Journal of Materials Chemistry A, 2018, 6, 23318-23325.	10.3	69
53	Electrochemical property of NH4V3O8·0.2H2O flakes prepared by surfactant assisted hydrothermal method. Journal of Power Sources, 2011, 196, 788-792.	7.8	68
54	Hybrid high-concentration electrolyte significantly strengthens the practicability of alkaline aluminum-air battery. Energy Storage Materials, 2020, 31, 310-317.	18.0	67

#	Article	IF	CITATIONS
55	TiO2@C nanosheets with highly exposed (0 0 1) facets as a high-capacity anode for Na-ion batteries. Chemical Engineering Journal, 2018, 332, 57-65.	12.7	66
56	Revealing the Twoâ€Ðimensional Surface Diffusion Mechanism for Zinc Dendrite Formation on Zinc Anode. Small, 2022, 18, e2104148.	10.0	66
57	NaV ₆ O ₁₅ Nanoflakes with Good Cycling Stability as a Cathode for Sodium Ion Battery. Journal of the Electrochemical Society, 2015, 162, A39-A43.	2.9	65
58	A comprehensive review on the fabrication, modification and applications of Na ₃ V ₂ (PO ₄) ₂ F ₃ cathodes. Journal of Materials Chemistry A, 2020, 8, 21387-21407.	10.3	65
59	A Three in One Strategy to Achieve Zirconium Doping, Boron Doping, and Interfacial Coating for Stable LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode. Advanced Science, 2021, 8, 2001809.	11.2	63
60	Issues and rational design of aqueous electrolyte for Znâ€ion batteries. SusMat, 2021, 1, 432-447.	14.9	62
61	Sn layer decorated copper mesh with superior lithiophilicity for stable lithium metal anode. Chemical Engineering Journal, 2020, 395, 124922.	12.7	61
62	NH4V3O8/carbon nanotubes composite cathode material with high capacity and good rate capability. Journal of Power Sources, 2011, 196, 9786-9791.	7.8	58
63	Synthesis and electrochemical performance of Li2FeSiO4/C as cathode material for lithium batteries. Solid State Ionics, 2010, 181, 1451-1455.	2.7	56
64	Li _x V ₂ O ₅ /LiV ₃ O ₈ nanoflakes with significantly improved electrochemical performance for Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 8009-8016.	10.3	53
65	NH4V3O8 nanorod as a high performance cathode material for rechargeable Li-ion batteries. Journal of Power Sources, 2012, 199, 315-321.	7.8	48
66	Nanoparticulate Mn0.3Ce0.7O2: a novel electrocatalyst with improved power performance for metal/air batteries. Journal of Materials Chemistry A, 2013, 1, 12512.	10.3	47
67	In-situ synthesis of carbon coated Li2MnSiO4 nanoparticles with high rate performance. Journal of Power Sources, 2013, 242, 865-871.	7.8	47
68	Advanced aqueous rechargeable lithium battery using nanoparticulate LiTi2(PO4)3/C as a superior anode. Scientific Reports, 2015, 5, 10733.	3.3	46
69	Engineering the crystal orientation of Na ₃ V ₂ (PO ₄) ₂ F ₃ @rGO microcuboids for advanced sodium-ion batteries. Materials Chemistry Frontiers, 2020, 4, 2932-2942.	5.9	46
70	Synthesis of LiV3O8 nanosheets as a high-rate cathode material for rechargeable lithium batteries. CrystEngComm, 2012, 14, 2831.	2.6	44
71	Nitrogen Plasma-Treated Core–Bishell Si@SiO _{<i>x</i>} @TiO _{2â[~]δ} : Nanoparticles with Significantly Improved Lithium Storage Performance. ACS Applied Materials & Interfaces, 2019, 11, 27658-27666.	8.0	44
72	Enhanced Electrochemical Properties of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ at Elevated Temperature by Simultaneous Structure and Interface Regulating. Journal of the Electrochemical Society, 2019, 166, A1439-A1448.	2.9	44

#	Article	IF	CITATIONS
73	Synergistic effect of N-doping and rich oxygen vacancies induced by nitrogen plasma endows TiO2 superior sodium storage performance. Electrochimica Acta, 2019, 309, 242-252.	5.2	44
74	Dual-Element-Modified Single-Crystal LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ as a Highly Stable Cathode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 43039-43050.	8.0	44
75	Long-lived Aqueous Rechargeable Lithium Batteries Using Mesoporous LiTi2(PO4)3@C Anode. Scientific Reports, 2015, 5, 17452.	3.3	43
76	NaTi ₂ (PO ₄) ₃ Nanoparticles Embedded in Carbon Matrix as Long-Lived Anode for Aqueous Lithium Ion Battery. Journal of the Electrochemical Society, 2016, 163, A1388-A1393.	2.9	43
77	Thermal Behavior Investigation of LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ â€Based Liâ€ion Battery under Overcharged Test. Chinese Journal of Chemistry, 2011, 29, 27-32.	4.9	41
78	Additive-free solvothermal synthesis of hierarchical flower-like LiFePO4/C mesocrystal and its electrochemical performance. RSC Advances, 2013, 3, 19366.	3.6	41
79	Melamine assisted one-pot synthesis of Au nanoflowers and their catalytic activity towards p-nitrophenol. New Journal of Chemistry, 2012, 36, 2286.	2.8	40
80	Three-dimensional MoO2 nanotextiles assembled from elongated nanowires as advanced anode for Li ion batteries. Journal of Power Sources, 2017, 361, 1-8.	7.8	40
81	Interfacial Design of Dendriteâ€Free Zinc Anodes for Aqueous Zincâ€Ion Batteries. Angewandte Chemie, 2020, 132, 13280-13291.	2.0	40
82	Synthesis of Î ³ -LiV2O5 nanorods as a high-performance cathode for Li ion battery. Journal of Solid State Electrochemistry, 2012, 16, 2555-2561.	2.5	39
83	Electrochemical interface reconstruction to eliminate surface heterogeneity for dendrite-free zinc anodes. Energy Storage Materials, 2022, 47, 319-326.	18.0	39
84	Synthesis and characterization of nano-Li1.95FeSiO4/C composite as cathode material for lithium-ion batteries. Electrochimica Acta, 2012, 60, 239-243.	5.2	37
85	Advanced cathodes for potassium-ion batteries with layered transition metal oxides: a review. Journal of Materials Chemistry A, 2021, 9, 8221-8247.	10.3	37
86	Additive-free solvothermal synthesis and Li-ion intercalation properties ofÂdumbbell-shaped LiFePO4/C mesocrystals. Journal of Power Sources, 2013, 239, 103-110.	7.8	36
87	Synthesis and electrochemical properties of NaV3O8 nanoflakes as high-performance cathode for Li-ion battery. RSC Advances, 2014, 4, 8328.	3.6	36
88	N-Doped carbon supported Co ₃ O ₄ nanoparticles as an advanced electrocatalyst for the oxygen reduction reaction in Al–air batteries. RSC Advances, 2016, 6, 55552-55559.	3.6	36
89	Enhanced sodium ion storage performance of Na3V2(PO4)3 with N-doped carbon by folic acid as carbon-nitrogen source. Journal of Alloys and Compounds, 2018, 732, 454-459.	5.5	36
90	Reviving bulky MoS ₂ as an advanced anode for lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 10988-10997.	10.3	36

#	Article	IF	CITATIONS
91	The Associations of Uric Acid, Cardiovascular and All-Cause Mortality in Peritoneal Dialysis Patients. PLoS ONE, 2014, 9, e82342.	2.5	35
92	Synthesis and electrochemical performances of Na ₃ V ₂ (PO ₄) ₂ F ₃ /C composites as cathode materials for sodium ion batteries. RSC Advances, 2019, 9, 30628-30636.	3.6	33
93	Advanced LiTi2(PO4)3/C anode by incorporation of carbon nanotubes for aqueous lithium-ion batteries. Ionics, 2017, 23, 575-583.	2.4	32
94	The effect of solid electrolyte interface formation conditions on the aging performance of Li-ion cells. Journal of Solid State Electrochemistry, 2011, 15, 1987-1995.	2.5	31
95	Sodium citrate as a self-sacrificial sodium compensation additive for sodium-ion batteries. Chemical Communications, 2021, 57, 4243-4246.	4.1	31
96	Regulating closed pore structure enables significantly improved sodium storage for hard carbon pyrolyzing at relatively low temperature. SusMat, 2022, 2, 357-367.	14.9	31
97	Boosted electrochemical properties of porous Li2FeSiO4/C based on Fe-MOFs precursor for lithium ion batteries. Vacuum, 2020, 171, 108997.	3.5	30
98	How does Molybdenum Disulfide Store Charge: A Minireview. ChemSusChem, 2020, 13, 1354-1365.	6.8	30
99	Titanium Monoxide-Stabilized Silicon Nanoparticles with a Litchi-like Structure as an Advanced Anode for Li-ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 48467-48475.	8.0	29
100	Size controlling and surface engineering enable NaTi2(PO4)3/C outstanding sodium storage properties. Electrochimica Acta, 2018, 289, 21-28.	5.2	28
101	Lithium deficient mesoporous Li 2â^'x MnSiO 4 with significantly improved electrochemical performance. Journal of Power Sources, 2014, 247, 497-502.	7.8	27
102	Oxygen Vacancy Engineering in Titanium Dioxide for Sodium Storage. Chemistry - an Asian Journal, 2021, 16, 3-19.	3.3	27
103	A piece of common cellulose paper but with outstanding functions for advanced aqueous zinc-ion batteries. Materials Today Energy, 2022, 28, 101076.	4.7	27
104	A Review of Al Alloy Anodes for Al–Air Batteries in Neutral and Alkaline Aqueous Electrolytes. Acta Metallurgica Sinica (English Letters), 2021, 34, 309-320.	2.9	26
105	Ti3+ self-doped Li4Ti5O12 with rich oxygen vacancies for advanced lithium-ion batteries. Ionics, 2020, 26, 1739-1747.	2.4	25
106	Defect engineering of molybdenum disulfide for energy storage. Materials Chemistry Frontiers, 2021, 5, 5880-5896.	5.9	25
107	Facile synthesis and lithium storage performance of (NH4)2V3O8 nanoflakes. Journal of Applied Electrochemistry, 2016, 46, 879-885.	2.9	24
108	Ultrathin (NH ₄) _{0.5} V ₂ O ₅ Nanosheets as a Stable Anode for Aqueous Lithium Ion Battery. Journal of the Electrochemical Society, 2016, 163, A2349-A2355.	2.9	23

#	Article	IF	CITATIONS
109	Na ⁺ and Zr ⁴⁺ co-doped Li ₄ Ti ₅ O ₁₂ as anode materials with superior electrochemical performance for lithium ion batteries. RSC Advances, 2016, 6, 90455-90461.	3.6	23
110	Spray drying-assisted synthesis of hollow spherical Li2FeSiO4/C particles with high performance for Li-ion batteries. Solid State Ionics, 2015, 278, 203-208.	2.7	22
111	Synthesis and high cycle performance of Li ₂ ZnTi ₃ O ₈ /C anode material promoted by asphalt as a carbon precursor. RSC Advances, 2016, 6, 49298-49306.	3.6	22
112	Transcriptome profiling analysis reveals metabolic changes across various growth phases in Bacillus pumilus BA06. BMC Microbiology, 2017, 17, 156.	3.3	22
113	Sulfur and nitrogen-doped Li4Ti5O12/rGO as an anode material for advanced sodium-ion batteries. Journal of Alloys and Compounds, 2021, 857, 158190.	5.5	22
114	Intrinsically zincophobic protective layer for dendrite-free zinc metal anode. Chinese Chemical Letters, 2022, 33, 2653-2657.	9.0	22
115	Exploring the Polyadenylated RNA Virome of Sweet Potato through High-Throughput Sequencing. PLoS ONE, 2014, 9, e98884.	2.5	20
116	Superior Na-storage performance of Na3V2(PO4)3/C-Ag composites as cathode material for Na-ion battery. Journal of Alloys and Compounds, 2020, 822, 153587.	5.5	20
117	Uniform AlF3 thin layer to improve rate capability of LiNi1/3Co1/3 Mn1/3O2 material for Li-ion batteries. Transactions of Nonferrous Metals Society of China, 2010, 20, 803-808.	4.2	19
118	The fabrication of hierarchical MoO2@MoS2/rGO composite as high reversible anode material for lithium ion batteries. Electrochimica Acta, 2020, 364, 136996.	5.2	19
119	Three-Dimensional MnCo2O4.5Mesoporous Networks as an Electrocatalyst for Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2015, 162, A2302-A2307.	2.9	18
120	Facile preparation of robust porous MoS2/C nanosheet networks as anode material for sodium ion batteries. Journal of Materials Science, 2019, 54, 2472-2482.	3.7	18
121	Preparation and characterization of spinel LiMn2O4 nanorods as lithium-ion battery cathodes. Transactions of Nonferrous Metals Society of China, 2010, 20, 2309-2313.	4.2	17
122	High-rate properties of Li1.95FeSiO4/C/CNTs composite as cathode material for lithium-ion batteries. Solid State Ionics, 2012, 220, 18-22.	2.7	17
123	AlF3 coated LiV3O8 nanosheets with significantly improved cycling stability as cathode material for Li-ion battery. Solid State Ionics, 2013, 236, 37-42.	2.7	17
124	Plasma-treated Ti ³⁺ -doped sodium titanate nanosheet arrays on titanium foil as a lithiophilic current collector for a stable lithium metal anode. Chemical Communications, 2019, 55, 6551-6554.	4.1	17
125	Enhanced electrochemical performance of Mg2Ni alloy prepared by rapid quenching in magnetic field. Journal of Power Sources, 2013, 238, 257-264.	7.8	16
126	Two-step carbon modification of NaTi2(PO4)3 with improved sodium storage performance for Na-ion batteries. Journal of Central South University, 2018, 25, 2320-2331.	3.0	16

#	Article	IF	CITATIONS
127	Electrode–Electrolyte Interfacial Chemistry Modulation for Ultraâ€High Rate Sodiumâ€ŀon Batteries. Angewandte Chemie, 2022, 134, .	2.0	16
128	Advanced Materials Prepared via Metallic Reduction Reactions for Electrochemical Energy Storage. Small Methods, 2020, 4, 2000613.	8.6	15
129	Scalable slurry-coating induced integrated 3D lithiophilic architecture for stable lithium metal anodes. Journal of Power Sources, 2021, 485, 229334.	7.8	15
130	Dual carbon coating engineering endows hollow structured TiO2 with superior sodium storage performance. Journal of Power Sources, 2021, 489, 229516.	7.8	15
131	Multi-layered Al2O3/LixV2O5/LiV3O8 nanoflakes with superior cycling stability as cathode material for Li-ion battery. Electrochimica Acta, 2015, 157, 211-217.	5.2	14
132	Cu/Cu2O nanoparticles co-regulated carbon catalyst for alkaline Al-air batteries. Chinese Chemical Letters, 2021, 32, 2427-2432.	9.0	14
133	Lithium reduction reaction for interfacial regulation of lithium metal anode. Chemical Communications, 2022, 58, 2597-2611.	4.1	14
134	Renewable waste biomass-derived carbon materials for energy storage. Journal Physics D: Applied Physics, 2022, 55, 313002.	2.8	14
135	The Association of Individual and Regional Socioeconomic Status on Initial Peritonitis and Outcomes in Peritoneal Dialysis Patients: A Propensity Score-Matched Cohort Study. Peritoneal Dialysis International, 2016, 36, 395-401.	2.3	13
136	Electrochemical presodiation promoting lithium storage performance of Mo-based anode materials. Ceramics International, 2017, 43, 11967-11972.	4.8	13
137	Genotoxicity of a Low-Dose Nitrosamine Mixture as Drinking Water Disinfection Byproducts in NIH3T3 Cells. International Journal of Medical Sciences, 2017, 14, 961-969.	2.5	13
138	Associations between Serum-Intact Parathyroid Hormone, Serum 25-Hydroxyvitamin D. Oral Vitamin D Analogs and Metabolic Syndrome in Peritoneal Dialysis Patients: A Multi-Center Cross-Sectional Study. Peritoneal Dialysis International, 2014, 34, 447-455.	2.3	12
139	Isolation and characterization of cDNAs and genomic DNAs encoding ADP-glucose pyrophosphorylase large and small subunits from sweet potato. Molecular Genetics and Genomics, 2016, 291, 609-620.	2.1	12
140	Porous lithium titanate nanosheets as an advanced anode material for sodium ion batteries. Journal of Materials Science, 2020, 55, 4372-4381.	3.7	12
141	High performance Li4Ti5O12/CN anode material promoted by melamine–formaldehyde resin as carbon–nitrogen precursor. RSC Advances, 2015, 5, 55994-56000.	3.6	11
142	Spherical Li1.95Na0.05FeSiO4/C composite as nanoporous cathode material exhibiting high rate capability. Materials Letters, 2016, 173, 207-210.	2.6	11
143	Interfacial Reviving of the Degraded LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode by LiPO ₃ Repair Strategy. Small, 2022, 18, e2107346.	10.0	11
144	Engineering Crystal Orientation of Cathode for Advanced Lithiumâ€lon Batteries: A Minireview. Chemical Record, 2022, 22, .	5.8	11

#	Article	IF	CITATIONS
145	The Associations between the Family Education and Mortality of Patients on Peritoneal Dialysis. PLoS ONE, 2014, 9, e95894.	2.5	10
146	Core-Bishell Fe-Ni @ Fe ₃ O ₄ @ C Nanoparticles as an Advanced Anode for Rechargeable Nickel-Iron Battery. Journal of the Electrochemical Society, 2017, 164, A1333-A1338.	2.9	10
147	Enhanced electrochemical properties of Li2ZnTi3O8/C nanocomposite synthesized with phenolic resin as carbon source. Journal of Solid State Electrochemistry, 2017, 21, 125-131.	2.5	10
148	Synthesis and characterization of spherical nonstoichiometric Ni(OH)x (x=2.03–2.10) as electrode materials. Journal of Power Sources, 2010, 195, 5094-5100.	7.8	9
149	Red-blood-cell-like nitrogen-doped porous carbon as an efficient metal-free catalyst for oxygen reduction reaction. Journal of Central South University, 2019, 26, 1458-1468.	3.0	9
150	Molybdenum host and interphase induced decentralized lithium deposition for dendrite-free lithium metal anodes. Chemical Engineering Journal, 2021, 426, 131110.	12.7	9
151	Grain refining effect of magnetic field on Mg2Ni0.8Mn0.2 hydrogen storage alloys during rapid quenching. Electrochimica Acta, 2013, 112, 535-540.	5.2	8
152	Electrochemical Properties of Rutile TiO2 Nanorod Array in Lithium Hydroxide Solution. Nanoscale Research Letters, 2016, 11, 448.	5.7	8
153	A Strategy to Achieve Well-Dispersed Hollow Nitrogen-Doped Carbon Microspheres with Trace Iron for Highly Efficient Oxygen Reduction Reaction in Al-Air Batteries. Journal of the Electrochemical Society, 2018, 165, A3766-A3772.	2.9	8
154	Turn "Waste―into Wealth: A Facile Reviving Strategy for Degraded Ni-Rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathodes. Industrial & Engineering Chemistry Research, 2022, 61, 141-151.	3.7	7
155	Effect of magnetic field on the microstructure and electrochemical performance of rapidly quenched La 0.1 Nd 0.075 Mg 0.04 Ni 0.65 Co 0.12 alloy. Journal of Alloys and Compounds, 2014, 617, 722-728.	5.5	6
156	Ketoacid Supplementation Partially Improves Metabolic Parameters in Patients on Peritoneal Dialysis. Peritoneal Dialysis International, 2015, 35, 736-742.	2.3	6
157	Condensation properties of vesicles formed from an amphiphilic N-phosphorylamino acid. Journal of Colloid and Interface Science, 2005, 287, 307-311.	9.4	5
158	Electrochemical behavior and cyclic fading mechanism of LiNi0.5Mn0.5O2 electrode in LiNO3 electrolyte. Transactions of Nonferrous Metals Society of China, 2014, 24, 415-422.	4.2	5
159	Improved Na storage performance of Na ₃ V ₂ (PO ₄) ₃ cathode material for sodium-ion batteries by K-Cl co-doping. Journal Physics D: Applied Physics, 2021, 54, 104002.	2.8	5
160	Titelbild: The Threeâ€Dimensional Dendriteâ€Free Zinc Anode on a Copper Mesh with a Zincâ€Oriented Polyacrylamide Electrolyte Additive (Angew. Chem. 44/2019). Angewandte Chemie, 2019, 131, 15701-15701.	2.0	4
161	Li4Ti5O12/C anode material with high-rate performance using phenanthroline as carbon precursor. Ionics, 2015, 21, 629-634.	2.4	3
162	Oxocarbons Electrode Materials for Alkali Ion Batteries: Challenges, Strategies and Development. Batteries and Supercaps, 2021, 4, 1791-1802.	4.7	2

#	Article	IF	CITATIONS
163	Preface to the special issue on energy storage and conversion. Journal of Central South University, 2019, 26, 1385-1386.	3.0	1
164	FT–IR Studies on Langmuir–Blodgett Films of Novel Phosphorus Amphiphiles: Spontaneous Polycondensation at the Air/Water Interface. Journal of Chemical Research, 2005, 2005, 385-387.	1.3	0
165	Synthesis of zinc oxide nanorods in ionic liquid via ultrasonic irradiation. , 2009, , .		Ο
166	A study on the local environment of lanthanide ion in nanocrystalline titania. , 2009, , .		0
167	A study on the ultrasonic preparation of nanocrystalline zinc oxide in room temperature ionic liquid and triethylene glycol. , 2010, , .		0