
Thomas Poiger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9194746/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnitude and decline of pesticide coâ€formulant residues in vegetables and fruits: results from field trials compared to estimated values. Pest Management Science, 2021, 77, 1187-1196.	1.7	9
2	Degradation and sorption of the herbicides 2,4-D and quizalofop-P-ethyl and their metabolites in soils from railway tracks. Environmental Sciences Europe, 2020, 32, .	2.6	9
3	Behavior of Glyphosate in Wastewater Treatment Plants. Chimia, 2020, 74, 156-160.	0.3	9
4	Behavior of the Chiral Herbicide Imazamox in Soils: Enantiomer Composition Differentiates between Biodegradation and Photodegradation. Environmental Science & Technology, 2019, 53, 5733-5740.	4.6	9
5	Behavior of the Chiral Herbicide Imazamox in Soils: pH-Dependent, Enantioselective Degradation, Formation and Degradation of Several Chiral Metabolites. Environmental Science & Technology, 2019, 53, 5725-5732.	4.6	38
6	Seasonal Dynamics of Glyphosate and AMPA in Lake Greifensee: Rapid Microbial Degradation in the Epilimnion During Summer. Environmental Science & Technology, 2018, 52, 4641-4649.	4.6	48
7	Occurrence of the herbicide glyphosate and its metabolite AMPA in surface waters in Switzerland determined with on-line solid phase extraction LC-MS/MS. Environmental Science and Pollution Research, 2017, 24, 1588-1596.	2.7	118
8	Time-dependent sorption of two novel fungicides in soils within a regulatory framework. Pest Management Science, 2016, 72, 2218-2230.	1.7	9
9	Leaching of the Neonicotinoids Thiamethoxam and Imidacloprid from Sugar Beet Seed Dressings to Subsurface Tile Drains. Journal of Agricultural and Food Chemistry, 2016, 64, 6407-6415.	2.4	61
10	Stereoselective Metabolism of the Sterol Biosynthesis Inhibitor Fungicides Fenpropidin, Fenpropimorph, and Spiroxamine in Grapes, Sugar Beets, and Wheat. Journal of Agricultural and Food Chemistry, 2016, 64, 5301-5309.	2.4	18
11	Environmental Behavior of the Chiral Herbicide Haloxyfop. 1. Rapid and Preferential Interconversion of the Enantiomers in Soil. Journal of Agricultural and Food Chemistry, 2015, 63, 2583-2590.	2.4	25
12	Environmental Behavior of the Chiral Herbicide Haloxyfop. 2. Unchanged Enantiomer Composition in Blackgrass (<i>Alopecurus myosuroides</i>) and Garden Cress (<i>Lepidium sativum</i>). Journal of Agricultural and Food Chemistry, 2015, 63, 2591-2596.	2.4	10
13	Online solid phase extraction LC–MS/MS method for the analysis of succinate dehydrogenase inhibitor fungicides and its applicability to surface water samples. Analytical and Bioanalytical Chemistry, 2014, 406, 6419-6427.	1.9	36
14	The Chiral Herbicide Beflubutamid (II): Enantioselective Degradation and Enantiomerization in Soil, and Formation/Degradation of Chiral Metabolites. Environmental Science & Technology, 2013, 47, 6812-6818.	4.6	22
15	The Chiral Herbicide Beflubutamid (I): Isolation of Pure Enantiomers by HPLC, Herbicidal Activity of Enantiomers, and Analysis by Enantioselective GC-MS. Environmental Science & Technology, 2013, 47, 6806-6811.	4.6	25
16	Enantioselective Dehydrochlorination of δ-Hexachlorocyclohexane and δ-Pentachlorocyclohexene by LinA1 and LinA2 from Sphingobium indicum B90A. Applied and Environmental Microbiology, 2013, 79, 6180-6183.	1.4	8
17	Enzymatic Conversion of ε-Hexachlorocyclohexane and a Heptachlorocyclohexane Isomer, Two Neglected Components of Technical Hexachlorocyclohexane. Environmental Science & Technology, 2012, 46, 4051-4058.	4.6	35
18	Saccharin and Other Artificial Sweeteners in Soils: Estimated Inputs from Agriculture and Households, Degradation, and Leaching to Groundwater. Environmental Science & Technology, 2011, 45, 615-621.	4.6	159

THOMAS POIGER

#	Article	IF	CITATIONS
19	Acesulfam: ein künstlicher Süßstoff als Abwasserindikator. Nachrichten Aus Der Chemie, 2011, 59, 1084-1086.	0.0	1
20	Acesulfame: From Sugar Substitute to Wastewater Marker. Chimia, 2011, 65, 176-176.	0.3	6
21	Hydrophilic anthropogenic markers for quantification of wastewater contamination in groundâ€and surface WATERS. Environmental Toxicology and Chemistry, 2009, 28, 2528-2536.	2.2	92
22	Composition of Aldrin, Dieldrin, and Photodieldrin Enantiomers in Technical and Environmental Samples. Journal of Agricultural and Food Chemistry, 2009, 57, 7445-7452.	2.4	11
23	Ubiquitous Occurrence of the Artificial Sweetener Acesulfame in the Aquatic Environment: An Ideal Chemical Marker of Domestic Wastewater in Groundwater. Environmental Science & Technology, 2009, 43, 4381-4385.	4.6	423
24	Azole Fungicides: Occurrence and Fate in Wastewater and Surface Waters. Environmental Science & Technology, 2008, 42, 7193-7200.	4.6	356
25	Nicotine Derivatives in Wastewater and Surface Waters: Application as Chemical Markers for Domestic Wastewater. Environmental Science & Technology, 2008, 42, 6354-6360.	4.6	123
26	Hydroxylated Metabolites of β- and δ-Hexachlorocyclohexane: Bacterial Formation, Stereochemical Configuration, and Occurrence in Groundwater at a Former Production Site. Environmental Science & Technology, 2007, 41, 4292-4298.	4.6	51
27	Occurrence and Fate of the Cytostatic Drugs Cyclophosphamide and Ifosfamide in Wastewater and Surface Waters. Environmental Science & Technology, 2006, 40, 7242-7250.	4.6	234
28	Combined Sewer Overflows to Surface Waters Detected by the Anthropogenic Marker Caffeine. Environmental Science & Technology, 2006, 40, 4096-4102.	4.6	156
29	Influence of pH on the Stereoselective Degradation of the Fungicides Epoxiconazole and Cyproconazole in Soils. Environmental Science & Technology, 2006, 40, 5443-5450.	4.6	88
30	Entry Pathways of UV Filters from Sunscreens to Swiss Lakes. Chimia, 2006, 60, 95-95.	0.3	5
31	Eggs of cabbage root fly stimulate conspecific oviposition: Evaluation of the activity and determination of an egg-associated compound. Chemoecology, 2006, 16, 107-113.	0.6	6
32	Enantioselective Transformation of α-Hexachlorocyclohexane by the Dehydrochlorinases LinA1 and LinA2 from the Soil Bacterium Sphingomonas paucimobilis B90A. Applied and Environmental Microbiology, 2005, 71, 8514-8518.	1.4	93
33	Stereoisomer Composition of the Chiral UV Filter 4-Methylbenzylidene Camphor in Environmental Samples. Environmental Science & Technology, 2005, 39, 3013-3019.	4.6	40
34	Occurrence of Some Organic UV Filters in Wastewater, in Surface Waters, and in Fish from Swiss Lakes. Environmental Science & Technology, 2005, 39, 953-962.	4.6	662
35	Occurrence of Methyl Triclosan, a Transformation Product of the Bactericide Triclosan, in Fish from Various Lakes in Switzerland. Environmental Science & Technology, 2004, 38, 390-395.	4.6	208
36	Occurrence of UV filter compounds from sunscreens in surface waters: regional mass balance in two Swiss lakes. Chemosphere, 2004, 55, 951-963.	4.2	331

THOMAS POIGER

#	Article	IF	CITATIONS
37	Caffeine, an Anthropogenic Marker for Wastewater Contamination of Surface Waters. Environmental Science & Technology, 2003, 37, 691-700.	4.6	650
38	Behavior of the Polycyclic Musks HHCB and AHTN in Lakes, Two Potential Anthropogenic Markers for Domestic Wastewater in Surface Waters. Environmental Science & Technology, 2003, 37, 5636-5644.	4.6	155
39	Enantioselective Degradation of Metalaxyl in Soils:Â Chiral Preference Changes with Soil pH. Environmental Science & Technology, 2003, 37, 2668-2674.	4.6	208
40	Occurrence and Fate of Organic Micropollutants in the Environment: Regional Mass Balances and Source Apportioning in Surface Waters Based on Laboratory Incubation Studies in Soil and Water, Monitoring, and Computer Modeling. Chimia, 2003, 57, 492-498.	0.3	22
41	Verifying the Chiral Switch of the Pesticide Metolachlor on the Basis of the Enantiomer Composition of Environmental Residues. Chimia, 2002, 56, 300-303.	0.3	18
42	Environmental Behavior of the Chiral Acetamide Pesticide Metalaxyl:Â Enantioselective Degradation and Chiral Stability in Soil. Environmental Science & Technology, 2002, 36, 221-226.	4.6	167
43	Occurrence and Environmental Behavior of the Bactericide Triclosan and Its Methyl Derivative in Surface Waters and in Wastewater. Environmental Science & Technology, 2002, 36, 2322-2329.	4.6	480
44	Isolation and Identification of the Metolachlor Stereoisomers Using High-Performance Liquid Chromatography, Polarimetric Measurements, and Enantioselective Gas Chromatography. Journal of Agricultural and Food Chemistry, 2001, 49, 42-49.	2.4	50
45	Comment On "Chemical-Biological Treatment Of Pyrene by Y. Zeng, P.K.A. Hong and D.A. Warrek, Water Research 34(4), 1157–1172 (2000)― Water Research, 2001, 35, 573-574.	5.3	1
46	Photodegradation of the pharmaceutical drug diclofenac in a lake: Pathway, field measurements, and mathematical modeling. Environmental Toxicology and Chemistry, 2001, 20, 256-263.	2.2	113
47	Identification of reactive dyes in spent dyebaths and wastewater by capillary electrophoresis–mass spectrometry. Journal of Chromatography A, 2000, 886, 271-282.	1.8	24
48	Analysis of anionic metallized azo and formazan dyes by capillary electrophoresis–mass spectrometry. Journal of Chromatography A, 2000, 886, 259-270.	1.8	20
49	Rapid anaerobic degradation of toxaphene in sewage sludge. Chemosphere, 2000, 40, 1213-1220.	4.2	19
50	Discrimination and thermal degradation of toxaphene compounds in capillary gas chromatography when using split/splitless and on-column injection. Chemosphere, 2000, 41, 473-479.	4.2	10
51	Comment on "Integrated Chemical-Biological Treatment of Benzo[a]pyrene― Environmental Science & Technology, 2000, 34, 4255-4255.	4.6	0
52	Changed Enantiomer Composition of Metolachlor in Surface Water Following the Introduction of the Enantiomerically Enriched Product to the Market. Environmental Science & Technology, 2000, 34, 2690-2696.	4.6	53
53	Comment on Influence of the Chemical Environment on Metolachlor Conformations. Journal of Agricultural and Food Chemistry, 2000, 48, 4448-4449.	2.4	4
54	Occurrence and Environmental Behavior of the Chiral Pharmaceutical Drug Ibuprofen in Surface Waters and in Wastewater. Environmental Science & Technology, 1999, 33, 2529-2535.	4.6	581

THOMAS POIGER

#	Article	IF	CITATIONS
55	Fate of Fluorescent Whitening Agents in the River Glatt. Environmental Science & Technology, 1999, 33, 533-539.	4.6	54
56	Behavior of fluorescent whitening agents during sewage treatment. Water Research, 1998, 32, 1939-1947.	5.3	70
57	Occurrence and Fate of the Pharmaceutical Drug Diclofenac in Surface Waters:  Rapid Photodegradation in a Lake. Environmental Science & Technology, 1998, 32, 3449-3456.	4.6	459
58	Occurrence of Fluorescent Whitening Agents in Sewage and River Water Determined by Solid-Phase Extraction and High-Performance Liquid Chromatography. Environmental Science & Technology, 1996, 30, 2220-2226.	4.6	61
59	Fate of secondary alkane sulfonate surfactants during municipal wastewater treatment. Water Research, 1995, 29, 1301-1307.	5.3	56