
Matthew Lavin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9194638/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolutionary Rates Analysis of Leguminosae Implicates a Rapid Diversification of Lineages during the Tertiary. Systematic Biology, 2005, 54, 575-594.	5.6	813
2	A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny: The Legume Phylogeny Working Group (LPWG). Taxon, 2017, 66, 44-77.	0.7	803
3	A phylogeny of legumes (Leguminosae) based on analysis of the plastid <i>matK</i> gene resolves many wellâ€supported subclades within the family. American Journal of Botany, 2004, 91, 1846-1862.	1.7	699
4	Woody Plant Diversity, Evolution, and Ecology in the Tropics: Perspectives from Seasonally Dry Tropical Forests. Annual Review of Ecology, Evolution, and Systematics, 2009, 40, 437-457.	8.3	573
5	Historical climate change and speciation: neotropical seasonally dry forest plants show patterns of both Tertiary and Quaternary diversification. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 515-538.	4.0	385
6	Legume phylogeny and classification in the 21st century: Progress, prospects and lessons for other species–rich clades. Taxon, 2013, 62, 217-248.	0.7	305
7	The dalbergioid legumes (Fabaceae): delimitation of a pantropical monophyletic clade. American Journal of Botany, 2001, 88, 503-533.	1.7	222
8	Contrasting plant diversification histories within the Andean biodiversity hotspot. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13783-13787.	7.1	191
9	Reconstructing the deep-branching relationships of the papilionoid legumes. South African Journal of Botany, 2013, 89, 58-75.	2.5	189
10	Revisiting the phylogeny of papilionoid legumes: New insights from comprehensively sampled earlyâ€branching lineages. American Journal of Botany, 2012, 99, 1991-2013.	1.7	187
11	Insights into the historical construction of speciesâ€rich biomes from dated plant phylogenies, neutral ecological theory and phylogenetic community structure. New Phytologist, 2006, 172, 605-616.	7.3	186
12	EVOLUTIONARY SIGNIFICANCE OF THE LOSS OF THE CHLOROPLASTâ€DNA INVERTED REPEAT IN THE LEGUMINOSAE SUBFAMILY PAPILIONOIDEAE. Evolution; International Journal of Organic Evolution, 1990, 44, 390-402.	2.3	180
13	Evolutionary islands in the Andes: persistence and isolation explain high endemism in Andean dry tropical forests. Journal of Biogeography, 2012, 39, 884-900.	3.0	178
14	Phylogeny of the Genus <i>Phaseolus</i> (Leguminosae): A Recent Diversification in an Ancient Landscape. Systematic Botany, 2006, 31, 779-791.	0.5	168
15	ORIGINS AND RELATIONSHIPS OF TROPICAL NORTH AMERICA IN THE CONTEXT OF THE BOREOTROPICS HYPOTHESIS. American Journal of Botany, 1993, 80, 1-14.	1.7	166
16	Phylogenetic systematics of the tribe Millettieae (Leguminosae) based on chloroplast trn K / mat K sequences and its implications for evolutionary patterns in Papilionoideae. American Journal of Botany, 2000, 87, 418-430.	1.7	165
17	Metacommunity process rather than continental tectonic history better explains geographically structured phylogenies in legumes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 1509-1522.	4.0	156
18	A late methanogen origin for molybdenumâ€dependent nitrogenase. Geobiology, 2011, 9, 221-232.	2.4	141

#	Article	IF	CITATIONS
19	Phylogenetic Analysis of the Cultivated and Wild Species of Phaseolus (Fabaceae). Systematic Botany, 1999, 24, 438.	0.5	138
20	Phylogeny of the tribe Indigofereae (Leguminosae–Papilionoideae): Geographically structured more in succulentâ€rich and temperate settings than in grassâ€rich environments. American Journal of Botany, 2009, 96, 816-852.	1.7	125
21	The contrasting nature of woody plant species in different neotropical forest biomes reflects differences in ecological stability. New Phytologist, 2016, 210, 25-37.	7.3	108
22	Dispersal assembly of rain forest tree communities across the Amazon basin. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2645-2650.	7.1	103
23	Evolution of the Phytochrome Gene Family and Its Utility for Phylogenetic Analyses of Angiosperms. Annals of the Missouri Botanical Garden, 1995, 82, 296.	1.3	98
24	Africa, the Odd Man Out: Molecular Biogeography of Dalbergioid Legumes (Fabaceae) Suggests Otherwise. Systematic Botany, 2000, 25, 449.	0.5	94
25	Phylogenetic reconstruction based on low copy DNA sequence data in an allopolyploid: The B genome of wheat. Genome, 1999, 42, 351-360.	2.0	89
26	<i>Vigna</i> (Leguminosae) sensu lato: The names and identities of the American segregate genera. American Journal of Botany, 2011, 98, 1694-1715.	1.7	81
27	Honey Bee Infecting Lake Sinai Viruses. Viruses, 2015, 7, 3285-3309.	3.3	73
28	Virus movement maintains local virus population diversity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19102-19107.	7.1	70
29	Use of Cellular CRISPR (Clusters of Regularly Interspaced Short Palindromic Repeats) Spacer-Based Microarrays for Detection of Viruses in Environmental Samples. Applied and Environmental Microbiology, 2010, 76, 7251-7258.	3.1	69
30	Origins and Relationships of Tropical North America in the Context of the Boreotropics Hypothesis. American Journal of Botany, 1993, 80, 1.	1.7	69
31	Genetic Diversity in Hard Red Spring Wheat Based on Sequenceâ€Taggedâ€Site PCR Markers. Crop Science, 1994, 34, 1628-1632.	1.8	68
32	Evolutionary Significance of the Loss of the Chloroplast-DNA Inverted Repeat in the Leguminosae Subfamily Papilionoideae. Evolution; International Journal of Organic Evolution, 1990, 44, 390.	2.3	66
33	[FeFe]-hydrogenase in Yellowstone National Park: evidence for dispersal limitation and phylogenetic niche conservatism. ISME Journal, 2010, 4, 1485-1495.	9.8	63
34	Fitting CRISPR-associated Cas3 into the Helicase Family Tree. Current Opinion in Structural Biology, 2014, 24, 106-114.	5.7	59
35	Monophyletic subgroups of the tribe Millettieae (Leguminosae) as revealed by phytochrome nucleotide sequence data. American Journal of Botany, 1998, 85, 412-433.	1.7	58
36	Heterogeneous Selection on LEGCYC Paralogs in Relation to Flower Morphology and the Phylogeny of Lupinus (Leguminosae). Molecular Biology and Evolution, 2003, 21, 321-331.	8.9	58

#	Article	IF	CITATIONS
37	Towards a new classification system for legumes: Progress report from the 6th International Legume Conference. South African Journal of Botany, 2013, 89, 3-9.	2.5	51
38	<i>Coursetia</i> (Leguminosae) From Eastern Brazil: Nuclear Ribosomal and Chloroplast DNA Sequence Analysis reveal the Monophyly of Three Caatinga-inhabiting Species. Systematic Botany, 2011, 36, 69-79.	0.5	48
39	CHLOROPLAST DNA VARIATION IN GLIRICIDIA SEPIUM (LEGUMINOSAE): INTRASPECIFIC PHYLOGENY AND TOKOGENY. American Journal of Botany, 1991, 78, 1576-1585.	1.7	47
40	Stability structures tropical woody plant diversity more than seasonality: Insights into the ecology of high legume-succulent-plant biodiversity. South African Journal of Botany, 2013, 89, 42-57.	2.5	47
41	Identifying Tertiary Radiations of Fabaceae in the Greater Antilles: Alternatives to Cladistic Vicariance Analysis. International Journal of Plant Sciences, 2001, 162, S53-S76.	1.3	46
42	Phylogeny and Biogeography of Wajira (Leguminosae): A Monophyletic Segregate of Vigna Centered in the Horn of Africa Region. Systematic Botany, 2004, 29, 903-920.	0.5	44
43	POLLEN BRUSH OF PAPILIONOIDEAE (LEGUMINOSAE): MORPHOLOGICAL VARIATION AND SYSTEMATIC UTILITY. American Journal of Botany, 1990, 77, 1294-1312.	1.7	42
44	Phylogenetic Systematics and Biogeography of the Tribe Robinieae (Leguminosae). Systematic Botany Monographs, 1995, 45, 1.	1.2	42
45	Monograph of Pictetia (Leguminosae-Papilionoideae) and Review of the Aeschynomeneae. Systematic Botany Monographs, 1999, 56, 1.	1.2	41
46	A molecular phylogeny of the vataireoid legumes underscores floral evolvability that is general to many earlyâ€branching papilionoid lineages. American Journal of Botany, 2013, 100, 403-421.	1.7	39
47	The realignment of <i>Acosmium</i> sensu stricto with the Dalbergioid clade (Leguminosae:) Tj ETQq1 1 0.784 earlyÂbranching papilionoid legumes. Taxon, 2012, 61, 1057-1073.	1314 rgBT / 0.7	Overlock 10 37
48	A dated phylogeny of the papilionoid legume genus Canavalia reveals recent diversification by a pantropical liana lineage. Molecular Phylogenetics and Evolution, 2016, 98, 133-146.	2.7	37
49	Keeping it simple: flowering plants tend to retain, and revert to, simple leaves. New Phytologist, 2012, 193, 481-493.	7.3	34
50	Biomes as evolutionary arenas: Convergence and conservatism in the trans ontinental succulent biome. Global Ecology and Biogeography, 2020, 29, 1100-1113.	5.8	34
51	The Genus Machaerium (Leguminosae) is More Closely Related to Aeschynomene Sect. Ochopodium than to Dalbergia: Inferences From Combined Sequence Data. Systematic Botany, 2007, 32, 762-771.	0.5	33
52	Bromus tectorum Response to Fire Varies with Climate Conditions. Ecosystems, 2014, 17, 960-973.	3.4	33
53	Systematics of Coursetia (Leguminosae-Papilionoideae). Systematic Botany Monographs, 1988, 21, 1.	1.2	31
54	The Bowdichia clade of Genistoid legumes: Phylogenetic analysis of combined molecular and morphological data and a recircumscription of <i>Diplotropis</i> . Taxon, 2012, 61, 1074-1087.	0.7	31

#	Article	IF	CITATIONS
55	Phaseolus vulgaris: A Diploid Model for Soybean. , 2008, , 55-76.		28
56	Drivers of Bromus tectorum Abundance in the Western North American Sagebrush Steppe. Ecosystems, 2016, 19, 986-1000.	3.4	27
57	Ectomycorrhizal fungi of whitebark pine (a tree in peril) revealed by sporocarps and molecular analysis of mycorrhizae from treeline forests in the Greater Yellowstone Ecosystem. Botany, 2008, 86, 14-25.	1.0	25
58	Tribal Relationships of Sphinctospermum (Leguminosae): Integration of Traditional and Chloroplast DNA Data. Systematic Botany, 1991, 16, 162.	0.5	23
59	The Impact of Ecology and Biogeography on Legume Diversity, Endemism, and Phylogeny in the Caribbean Region: A New Direction in Historical Biogeography. Botanical Review, The, 2008, 74, 178-196.	3.9	23
60	Contributions of Molecular Data to Papilionoid Legume Systematics. , 1992, , 223-251.		21
61	Pollen Brush of Papilionoideae (Leguminosae): Morphological Variation and Systematic Utility. American Journal of Botany, 1990, 77, 1294.	1.7	21
62	Biogeography and Systematics of Poitea (Leguminosae): Inferences from Morphological and Molecular Data. Systematic Botany Monographs, 1993, 37, 1.	1.2	20
63	<i>Poissonia eriantha</i> (Leguminosae) From Cuzco, Peru: An Overlooked Species Underscores a Pattern of Narrow Endemism Common to Seasonally Dry Neotropical Vegetation. Systematic Botany, 2011, 36, 59-68.	0.5	20
64	DNA Sequence Variation among Conspecific Accessions of the Legume Coursetia caribaea Reveals Geographically Localized Clades Here Ranked as Species. Systematic Botany, 2018, 43, 664-675.	0.5	20
65	The Morphological and Phylogenetic Distinctions of <i>Coursetia greenmanii</i> (Leguminosae): Taxonomic and Ecological Implications. Systematic Botany, 2010, 35, 289-295.	0.5	19
66	Silk Tree, Guanacaste, Monkey's Earring. A Generic System for the Synandrous Mimosaceae of the Americas. Part I. Abarema, Albizia, and Allies Systematic Botany, 1997, 22, 407.	0.5	17
67	Biogeographical, ecological and morphological structure in a phylogenetic analysis of Ateleia (Swartzieae, Fabaceae) derived from combined molecular, morphological and chemical data. Botanical Journal of the Linnean Society, 2010, 162, 39-53.	1.6	17
68	Chloroplast DNA Variation in Gliricidia sepium (Leguminosae): Intraspecific Phylogeny and Tokogeny. American Journal of Botany, 1991, 78, 1576.	1.7	17
69	Phylogenetic Systematics of Strophostyles (Fabaceae): A North American Temperate Genus Within a Neotropical Diversification. Systematic Botany, 2004, 29, 627-653.	0.5	16
70	Phylogenetic Systematics and Biogeography of the Pantropical Genus <i>Sesbania</i> (Leguminosae). Systematic Botany, 2018, 43, 414-429.	0.5	16
71	DISTRIBUTION AND EVOLUTION OF A GLUCOSEPHOSPHATE ISOMERASE DUPLICATION IN THE LEGUMINOSAE. Evolution; International Journal of Organic Evolution, 1989, 43, 1637-1651.	2.3	15
72	Floristic and Geographical Stability of Discontinuous Seasonally Dry Tropical Forests Explains		15

Patterns of Plant Phylogeny and Endemism. , 2006, , 433-447.

#	Article	IF	CITATIONS
73	Physical disturbance shapes vascular plant diversity more profoundly than fire in the sagebrush steppe of southeastern Idaho, U.S.A. Ecology and Evolution, 2013, 3, 1626-1641.	1.9	13
74	Steinbachiella (Leguminosae: Papilionoideae: Dalbergieae), endemic to Bolivia, is reinstated as an accepted genus. Kew Bulletin, 2012, 67, 789-796.	0.9	11
75	A Phylogenetic Analysis of Molecular and Morphological Data Reveals a Paraphyletic <i>Poecilanthe</i> (Leguminosae, Papilionoideae). Systematic Botany, 2014, 39, 1142-1149.	0.5	11
76	The Genus Sphinctospermum (Leguminosae): Taxonomy and Tribal Relationships as Inferred from a Cladistic Analysis of Traditional Data. Systematic Botany, 1990, 15, 544.	0.5	10
77	Ancient speciation of the papilionoid legume <i>Luetzelburgia jacana</i> , a newly discovered species in an interâ€Andean seasonally dry valley of Colombia. Taxon, 2018, 67, 931-943.	0.7	9
78	Distribution and Evolution of a Glucosephosphate Isomerase Duplication in the Leguminosae. Evolution; International Journal of Organic Evolution, 1989, 43, 1637.	2.3	7
79	A Biosystematic Study of Castilleja crista-galli (Scrophulariaceae): An Allopolyploid Origin Reexamined. Systematic Botany, 1998, 23, 213.	0.5	7
80	The occurrence of canavanine in seeds of the tribe robinieae. Biochemical Systematics and Ecology, 1986, 14, 71-73.	1.3	6
81	Astragalus molybdenus s.l. (Leguminosae): Higher Taxonomic Relationships and Identity of Constituent Species. Systematic Botany, 1997, 22, 199.	0.5	5
82	Indaziflam controls nonnative <i>Alyssum</i> spp. but negatively affects native forbs in sagebrush steppe. Invasive Plant Science and Management, 2021, 14, 253-261.	1.1	5
83	Peltiera(Fabaceae), the coming and going of an "extinct―genus in Madagascar. Adansonia, 2013, 35, 61-71.	0.2	4
84	ls whitebark pine less sensitive to climate warming when climate tolerances of juveniles are considered?. Forest Ecology and Management, 2021, 493, 119221.	3.2	4
85	New Records for the Moss Flora of Nevada. Bryologist, 1981, 84, 93.	0.6	3
86	Sensitivae Censitae: A Description of the Genus Mimosa Linnaeus (Mimosaceae) in the New World Systematic Botany, 1992, 17, 694.	0.5	3
87	Exploring evolutionarily meaningful vegetation definitions in the tropics: a community phylogenetic approach. , 2014, , 239-260.		3
88	Dispersal, isolation and diversification with continued gene flow in an Andean tropical dry forest. Molecular Ecology, 2017, 26, 3327-3329.	3.9	3
89	Distinguishing among Pisum accessions using a hypervariable intron within Mendel's green/yellow cotyledon gene. Genetic Resources and Crop Evolution, 2021, 68, 2591-2609.	1.6	3

90 Climate change and speciation in neotropical seasonally dry forest plants. , 2005, , 199-214.

#	Article	IF	CITATIONS
91	(1639–1640) Proposals to change the conserved type of <i> Phaseolus helvolus</i> , <i> nom</i> . <i>cons</i> . and to conserve the name <i>Glycine umbellata</i> with a conserved type (<i>Fabaceae</i>). Taxon, 2004, 53, 839-841.	0.7	2
92	An Economical Approach to Distinguish Genetically Needles of Limber from Whitebark Pine. Forests, 2019, 10, 1060.	2.1	2
93	Balboa (Fabaceae: Millettieae) Reduced to Cracca (Robinieae). Brittonia, 1986, 38, 302.	0.2	1
94	The Madrensis Group of Coursetia (Leguminosae: Robinieae). Systematic Botany, 1987, 12, 106.	0.5	0
95	Systematics of <i>Vigna</i> subgenus <i>Lasiospron</i> (Leguminosae: Papilionoideae: Phaseolinae). Systematic Botany, 2022, 47, 97-124.	0.5	0