Seth R Marder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/919417/publications.pdf

Version: 2024-02-01

339 papers 32,600 citations

7069 78 h-index 165 g-index

342 all docs $\begin{array}{c} 342 \\ \text{docs citations} \end{array}$

times ranked

342

26391 citing authors

#	Article	IF	CITATIONS
1	Highâ€Efficiency Ionâ€Exchange Doping of Conducting Polymers. Advanced Materials, 2022, 34, e2102988.	11.1	67
2	Short and long-range electron transfer compete to determine free-charge yield in organic semiconductors. Materials Horizons, 2022, 9, 312-324.	6.4	4
3	Controlled nâ€Doping of Naphthaleneâ€Diimideâ€Based 2D Polymers. Advanced Materials, 2022, 34, e2101932.	11.1	13
4	Tailoring capping-layer composition for improved stability of mixed-halide perovskites. Journal of Materials Chemistry A, 2022, 10, 2957-2965.	5.2	5
5	Organometallic and Organic Dimers: Moderately Air-Stable, Yet Highly Reducing, n-Dopants. Accounts of Chemical Research, 2022, 55, 319-332.	7.6	11
6	Powerful Organic Molecular Oxidants and Reductants Enable Ambipolar Injection in a Large-Gap Organic Homojunction Diode. ACS Applied Materials & Samp; Interfaces, 2022, 14, 2381-2389.	4.0	5
7	Hybrid Organic Lead Iodides: Role of Organic Cation Structure in Obtaining 1D Chains of Face-Sharing Octahedra vs 2D Perovskites. Chemistry of Materials, 2022, 34, 935-946.	3.2	7
8	A Semiconducting Twoâ€Dimensional Polymer as an Organic Electrochemical Transistor Active Layer. Advanced Materials, 2022, 34, e2110703.	11.1	19
9	Iron(III) Dopant Counterions Affect the Charge-Transport Properties of Poly(Thiophene) and Poly(Dialkoxythiophene) Derivatives. ACS Applied Materials & Interfaces, 2022, 14, 29039-29051.	4.0	5
10	Use of a Multiple Hydride Donor To Achieve an n-Doped Polymer with High Solvent Resistance. ACS Applied Materials & Samp; Interfaces, 2022, 14, 33598-33605.	4.0	3
11	Synthetic Routes for Heteroatomâ€Containing Alkylated/Arylated Polycyclic Aromatic Hydrocarbons. Angewandte Chemie, 2021, 133, 2960-2964.	1.6	6
12	A naphthalene diimide side-chain polymer as an electron-extraction layer for stable perovskite solar cells. Materials Chemistry Frontiers, 2021, 5, 450-457.	3.2	11
13	Persistent Conjugated Backbone and Disordered Lamellar Packing Impart Polymers with Efficient nâ€Doping and High Conductivities. Advanced Materials, 2021, 33, e2005946.	11.1	99
14	The Interlayer Method: A Universal Tool for Energy Level Alignment Tuning at Inorganic/Organic Semiconductor Heterojunctions. Advanced Functional Materials, 2021, 31, 2010174.	7.8	18
15	Synthetic Routes for Heteroatom ontaining Alkylated/Arylated Polycyclic Aromatic Hydrocarbons. Angewandte Chemie - International Edition, 2021, 60, 2924-2928.	7.2	14
16	Synthesis, structures, and reactivity of isomers of [RuCp*(1,4-(Me2N)2C6H4)]2. Dalton Transactions, 2021, 50, 13020-13030.	1.6	3
17	A polymeric bis(di- <i>p</i> -anisylamino)fluorene hole-transport material for stable n-i-p perovskite solar cells. New Journal of Chemistry, 2021, 45, 15017-15021.	1.4	3
18	Understanding how Lewis acids dope organic semiconductors: a "complex―story. Chemical Science, 2021, 12, 7012-7022.	3.7	23

#	Article	IF	Citations
19	Disentangling Bulk and Interface Phenomena in a Molecularly Doped Polymer Semiconductor. Advanced Optical Materials, 2021, 9, 2002039.	3.6	6
20	Reactivity of an air-stable dihydrobenzoimidazole n-dopant with organic semiconductor molecules. CheM, 2021, 7, 1050-1065.	5.8	40
21	Electron spin resonance resolves intermediate triplet states in delayed fluorescence. Nature Communications, 2021, 12, 4532.	5.8	38
22	Nanosecondâ€Pulsed Perovskite Lightâ€Emitting Diodes at High Current Density. Advanced Materials, 2021, 33, e2104867.	11.1	26
23	Benzocyclobutene polymer as an additive for a benzocyclobutene-fullerene: application in stable p–i–n perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 9347-9353.	5.2	6
24	Nonlinear photocarrier dynamics and the role of shallow traps in mixed-halide mixed-cation hybrid perovskites. Journal of Materials Chemistry C, 2021, 9, 8204-8212.	2.7	6
25	Highly air-stable, n-doped conjugated polymers achieved by dimeric organometallic dopants. Journal of Materials Chemistry C, 2021, 9, 4105-4111.	2.7	7
26	A Naphthalene Diimide Covalent Organic Framework: Comparison of Cathode Performance in Lithium-Ion Batteries with Amorphous Cross-linked and Linear Analogues, and Its Use in Aqueous Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 350-356.	2.5	20
27	Cross-Linking of Doped Organic Semiconductor Interlayers for Organic Solar Cells: Potential and Challenges. ACS Applied Energy Materials, 2021, 4, 14458-14466.	2.5	7
28	A photo-crosslinkable bis-triarylamine side-chain polymer as a hole-transport material for stable perovskite solar cells. Sustainable Energy and Fuels, 2020, 4, 190-198.	2.5	22
29	Optically Pumped Lasing from Hybrid Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2020, 8, 1901297.	3.6	49
30	Surface Functionalization of Black Phosphorus with a Highly Reducing Organoruthenium Complex: Interface Properties and Enhanced Photoresponsivity of Photodetectors. Chemistry - A European Journal, 2020, 26, 6576-6582.	1.7	4
31	Humidity Sensing through Reversible Isomerization of a Covalent Organic Framework. Journal of the American Chemical Society, 2020, 142, 783-791.	6.6	190
32	A structural study of p-type A–D–A oligothiophenes: effects of regioregular alkyl sidechains on annealing processes and photovoltaic performances. Journal of Materials Chemistry C, 2020, 8, 567-580.	2.7	4
33	Rapid Synthesis of High Surface Area Imine‣inked 2D Covalent Organic Frameworks by Avoiding Pore Collapse During Isolation. Advanced Materials, 2020, 32, e1905776.	11.1	125
34	Naphthalenediimide Cations Inhibit 2D Perovskite Formation and Facilitate Subpicosecond Electron Transfer. Journal of Physical Chemistry C, 2020, 124, 24379-24390.	1.5	17
35	New Mechanistic Insights into the Formation of Imine-Linked Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 18637-18644.	6.6	87
36	UV-to-IR Absorption of Molecularly p-Doped Polythiophenes with Alkyl and Oligoether Side Chains: Experiment and Interpretation Based on Density Functional Theory. Journal of Physical Chemistry B, 2020, 124, 11280-11293.	1.2	45

#	Article	IF	Citations
37	High Thermoelectric Power Factor of Poly(3-hexylthiophene) through In-Plane Alignment and Doping with a Molybdenum Dithiolene Complex. Macromolecules, 2020, 53, 6314-6321.	2.2	39
38	Dear Materials Community. Materials Horizons, 2020, 7, 1933-1934.	6.4	0
39	Electron transport in a sequentially doped naphthalene diimide polymer. Materials Advances, 2020, 1 , $1829-1834$.	2.6	14
40	Thermally Activated Delayed Fluorescence Sensitization for Highly Efficient Blue Fluorescent Emitters. Advanced Functional Materials, 2020, 30, 2005898.	7.8	25
41	New Design Strategy Toward NIR I Xanthene-Based Dyes. Journal of Organic Chemistry, 2020, 85, 12108-12116.	1.7	16
42	Electronically Coupled 2D Polymer/MoS ₂ Heterostructures. Journal of the American Chemical Society, 2020, 142, 21131-21139.	6.6	25
43	Highly Conjugated, Fused-Ring, Quadrupolar Organic Chromophores with Large Two-Photon Absorption Cross-Sections in the Near-Infrared. Journal of Physical Chemistry A, 2020, 124, 4367-4378.	1.1	20
44	Single-Step Formation of a Low Work Function Cathode Interlayer and n-type Bulk Doping from Semiconducting Polymer/Polyethylenimine Blend Solution. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28801-28807.	4.0	10
45	Structural Diversity in 2,2′-[Naphthalene-1,8:4,5-bis(dicarboximide)- <i>N,N</i> ′-diyl]-bis(ethylammonium) lodoplumbates. Inorganic Chemistry, 2020, 59, 8070-8080.	1.9	16
46	Potential-Modulated Total Internal Reflection Fluorescence for Measurement of the Electron Transfer Kinetics of Submonolayers on Optically Transparent Electrodes. Langmuir, 2020, 36, 6728-6735.	1.6	5
47	Thermal Management Enables Bright and Stable Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2020, 32, e2000752.	11.1	126
48	Exciton-band tuning induced by the width of the cation in 2D lead iodide perovskite hybrids. Materials Chemistry Frontiers, 2020, 4, 2023-2028.	3.2	12
49	Quantitative Analysis of Doping-Induced Polarons and Charge-Transfer Complexes of Poly(3-hexylthiophene) in Solution. Journal of Physical Chemistry B, 2020, 124, 7694-7708.	1.2	47
50	nâ€Doping of a Lowâ€Electronâ€Affinity Polymer Used as an Electronâ€Transport Layer in Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 2000328.	7.8	22
51	Ordered Donor–Acceptor Complex Formation and Electron Transfer in Co-deposited Films of Structurally Dissimilar Molecules. Journal of Physical Chemistry C, 2020, 124, 11023-11031.	1.5	6
52	Electrode Work Function Reduction by Polyethylenimine Interlayers: Choice of Solvent and Residual Solvent Removal for Superior Functionality. Advanced Materials Interfaces, 2020, 7, 2000291.	1.9	6
53	Structures of (4-Y-C ₆ H ₄ CH ₂ NH ₃) ₂ Pbl ₄ {Y = H, F, Cl, Br, I}: Tuning of Hybrid Organic Inorganic Perovskite Structures from Ruddlesden–Popper to Dion–lacobson Limits. Chemistry of Materials, 2019, 31, 6145-6153.	3.2	62
54	Interfacial charge-transfer doping of metal halide perovskites for high performance photovoltaics. Energy and Environmental Science, 2019, 12, 3063-3073.	15.6	111

#	Article	IF	CITATIONS
55	Chargeâ€Transport Properties of F ₆ TNAPâ€Based Chargeâ€Transfer Cocrystals. Advanced Functional Materials, 2019, 29, 1904858.	7.8	36
56	Cationic Polyelectrolyte for Anionic Cyanines: An Efficient Way To Translate Molecular Properties into Material Properties. Journal of the American Chemical Society, 2019, 141, 17331-17336.	6.6	12
57	Non-fullerene acceptors inaugurating a new era of organic photovoltaic research and technology. Materials Chemistry Frontiers, 2019, 3, 180-180.	3.2	19
58	Degenerate electron-doping in two-dimensional tungsten diselenide with a dimeric organometallic reductant. Materials Today, 2019, 30, 26-33.	8.3	14
59	Charge Recombination Dynamics in Organic Photovoltaic Systems with Enhanced Dielectric Constant. Advanced Functional Materials, 2019, 29, 1901269.	7.8	32
60	Design and synthesis of two-dimensional covalent organic frameworks with four-arm cores: prediction of remarkable ambipolar charge-transport properties. Materials Horizons, 2019, 6, 1868-1876.	6.4	62
61	Understanding the Effects of Molecular Dopant on nâ€Type Organic Thermoelectric Properties. Advanced Energy Materials, 2019, 9, 1900817.	10.2	118
62	Conductive, Solutionâ€Processed Dioxythiophene Copolymers for Thermoelectric and Transparent Electrode Applications. Advanced Energy Materials, 2019, 9, 1900395.	10.2	43
63	Bis(tercarbazole) pyrene and tetrahydropyrene derivatives: photophysical and electrochemical properties, theoretical modeling, and OLEDs. Journal of Materials Chemistry C, 2019, 7, 5009-5018.	2.7	16
64	Host-Free Yellow-Green Organic Light-Emitting Diodes with External Quantum Efficiency over 20% Based on a Compound Exhibiting Thermally Activated Delayed Fluorescence. ACS Applied Materials & Samp; Interfaces, 2019, 11, 12693-12698.	4.0	24
65	(4NPEA) ₂ Pbl ₄ (4NPEA = 4-Nitrophenylethylammonium): Structural, NMR, and Optical Properties of a 3 × 3 Corrugated 2D Hybrid Perovskite. Journal of the American Chemical Society, 2019, 141, 4521-4525.	6.6	37
66	Molecular-Reductant-Induced Control of a Graphene–Organic Interface for Electron Injection. Chemistry of Materials, 2019, 31, 6624-6632.	3.2	15
67	Phosphonic Acid Modification of the Electron Selective Contact: Interfacial Effects in Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 2402-2408.	2.5	23
68	Thermoelectric Performance of nâ€Type Poly(Niâ€tetrathiooxalate) as a Counterpart to Poly(Niâ€ethenetetrathiolate): NiTTO versus NiETT. Advanced Electronic Materials, 2019, 5, 1900066.	2.6	14
69	Breaking Down Resonance: Nonlinear Transport and the Breakdown of Coherent Tunneling Models in Single Molecule Junctions. Nano Letters, 2019, 19, 2555-2561.	4.5	32
70	Organometallic hydride-transfer agents as reductants for organic semiconductor molecules. Inorganica Chimica Acta, 2019, 489, 67-77.	1.2	8
71	Chemical Stabilities of the Lowest Triplet State in Aryl Sulfones and Aryl Phosphine Oxides Relevant to OLED Applications. Chemistry of Materials, 2019, 31, 1507-1519.	3.2	29
72	Predicting the yield of ion pair formation in molecular electrical doping: redox-potentials versus ionization energy/electron affinity. Journal of Materials Chemistry C, 2019, 7, 13839-13848.	2.7	20

#	Article	IF	CITATIONS
73	Acceptor Gradient Polymer Donors for Non-Fullerene Organic Solar Cells. Chemistry of Materials, 2019, 31, 9729-9741.	3.2	15
74	Ruthenium pentamethylcyclopentadienyl mesitylene dimer: a sublimable n-dopant and electron buffer layer for efficient n–i–p perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 25796-25801.	5.2	6
75	Enhanced Thermoelectric Power Factor of Tensile Drawn Poly(3-hexylthiophene). ACS Macro Letters, 2019, 8, 70-76.	2.3	56
76	Double doping of conjugated polymers with monomer molecular dopants. Nature Materials, 2019, 18, 149-155.	13.3	225
77	Positional Effects from Ïf-Bonded Platinum(II) on Intersystem Crossing Rates in Perylenediimide Complexes: Synthesis, Structures, and Photophysical Properties. Journal of Physical Chemistry C, 2018, 122, 13848-13862.	1.5	18
78	The role of fluorine-substitution on the π-bridge in constructing effective thermally activated delayed fluorescence molecules. Journal of Materials Chemistry C, 2018, 6, 5536-5541.	2.7	29
79	Direct Effect of Dielectric Surface Energy on Carrier Transport in Organic Field-Effect Transistors. ACS Applied Materials & ACS ACS Applied Materials & ACS ACS APPLIED & ACS ACS APPLIED & ACS ACS APPLIED & ACS ACS ACS APPLIED & ACS	4.0	35
80	Design of Near-Infrared-Absorbing Unsymmetrical Polymethine Dyes with Large Quadratic Hyperpolarizabilities. Chemistry of Materials, 2018, 30, 3410-3418.	3.2	35
81	A blue thermally activated delayed fluorescence emitter developed by appending a fluorene moiety to a carbazole donor with $\langle i \rangle$ -linkage for high-efficiency OLEDs. Materials Chemistry Frontiers, 2018, 2, 917-922.	3.2	35
82	Non-fullerene acceptors for organic solar cells. Nature Reviews Materials, 2018, 3, .	23.3	2,163
82	Non-fullerene acceptors for organic solar cells. Nature Reviews Materials, 2018, 3, . Panchromatic Ternary Photovoltaic Cells Using a Nonfullerene Acceptor Synthesized Using C–H Functionalization. Chemistry of Materials, 2018, 30, 309-313.	23.3	2,163 74
	Panchromatic Ternary Photovoltaic Cells Using a Nonfullerene Acceptor Synthesized Using C–H		·
83	Panchromatic Ternary Photovoltaic Cells Using a Nonfullerene Acceptor Synthesized Using C–H Functionalization. Chemistry of Materials, 2018, 30, 309-313. Absence of Mixed Phase in Organic Photovoltaic Active Layers Facilitates Use of Green Solvent	3.2	74
83	Panchromatic Ternary Photovoltaic Cells Using a Nonfullerene Acceptor Synthesized Using C–H Functionalization. Chemistry of Materials, 2018, 30, 309-313. Absence of Mixed Phase in Organic Photovoltaic Active Layers Facilitates Use of Green Solvent Processing. Journal of Physical Chemistry C, 2018, 122, 11136-11144. Surface modified fullerene electron transport layers for stable and reproducible flexible perovskite	3.2 1.5	74
83 84 85	Panchromatic Ternary Photovoltaic Cells Using a Nonfullerene Acceptor Synthesized Using C–H Functionalization. Chemistry of Materials, 2018, 30, 309-313. Absence of Mixed Phase in Organic Photovoltaic Active Layers Facilitates Use of Green Solvent Processing. Journal of Physical Chemistry C, 2018, 122, 11136-11144. Surface modified fullerene electron transport layers for stable and reproducible flexible perovskite solar cells. Nano Energy, 2018, 49, 324-332. Pronounced Side Chain Effects in Triple Bond-Conjugated Polymers Containing Naphthalene Diimides for n-Channel Organic Field-Effect Transistors. ACS Applied Materials & Cappaign Synthesized Using C–H	3.2 1.5 8.2	74 10 52
83 84 85 86	Panchromatic Ternary Photovoltaic Cells Using a Nonfullerene Acceptor Synthesized Using C–H Functionalization. Chemistry of Materials, 2018, 30, 309-313. Absence of Mixed Phase in Organic Photovoltaic Active Layers Facilitates Use of Green Solvent Processing. Journal of Physical Chemistry C, 2018, 122, 11136-11144. Surface modified fullerene electron transport layers for stable and reproducible flexible perovskite solar cells. Nano Energy, 2018, 49, 324-332. Pronounced Side Chain Effects in Triple Bond-Conjugated Polymers Containing Naphthalene Diimides for n-Channel Organic Field-Effect Transistors. ACS Applied Materials & Diimides (12921-12929). Effects of ⟨i⟩meso⟨li⟩-M(PPh⟨sub⟩3⟨lsub⟩)⟨sub⟩2⟨lsub⟩Cl (M = Pd, Ni) substituents on the linear and third-order nonlinear optical properties of chalcogenopyrylium-terminated heptamethines in	3.2 1.5 8.2 4.0	74 10 52 20
83 84 85 86	Panchromatic Ternary Photovoltaic Cells Using a Nonfullerene Acceptor Synthesized Using C–H Functionalization. Chemistry of Materials, 2018, 30, 309-313. Absence of Mixed Phase in Organic Photovoltaic Active Layers Facilitates Use of Green Solvent Processing. Journal of Physical Chemistry C, 2018, 122, 11136-11144. Surface modified fullerene electron transport layers for stable and reproducible flexible perovskite solar cells. Nano Energy, 2018, 49, 324-332. Pronounced Side Chain Effects in Triple Bond-Conjugated Polymers Containing Naphthalene Diimides for n-Channel Organic Field-Effect Transistors. ACS Applied Materials & Dimides (1921-12929). Effects of ⟨i⟩ meso⟨ji⟩-M(PPh⟨sub⟩3⟨sub⟩⟨sub⟩2⟨sub⟩2⟨sub⟩Cl (M = Pd, Ni) substituents on the linear and third-order nonlinear optical properties of chalcogenopyrylium-terminated heptamethines in solution and solid states. Journal of Materials Chemistry C, 2018, 6, 3613-3620. Tunable Third-Harmonic Generation from Polaritons in the Ultrastrong Coupling Regime. ACS	3.2 1.5 8.2 4.0	74 10 52 20

#	Article	IF	Citations
91	Origin of the π–π Spacing Change upon Doping of Semiconducting Polymers. Journal of Physical Chemistry C, 2018, 122, 27983-27990.	1.5	25
92	Randomly Distributed Conjugated Polymer Repeat Units for High-Efficiency Photovoltaic Materials with Enhanced Solubility and Processability. ACS Applied Materials & Samp; Interfaces, 2018, 10, 44583-44588.	4.0	18
93	Donor Conjugated Polymers with Polar Side Chain Groups: The Role of Dielectric Constant and Energetic Disorder on Photovoltaic Performance. Advanced Functional Materials, 2018, 28, 1803418.	7.8	42
94	Linear and Thirdâ€Order Nonlinear Optical Properties of Chalcogenopyryliumâ€Terminated Heptamethine Dyes with Rigid, Bulky Substituents. Advanced Functional Materials, 2018, 28, 1804073.	7.8	17
95	Near Length-Independent Conductance in Polymethine Molecular Wires. Nano Letters, 2018, 18, 6387-6391.	4.5	45
96	Hole Transport in Low-Donor-Content Organic Solar Cells. Journal of Physical Chemistry Letters, 2018, 9, 5496-5501.	2.1	33
97	Effect of the Number and Substitution Pattern of Carbazole Donors on the Singlet and Triplet State Energies in a Series of Carbazole-Oxadiazole Derivatives Exhibiting Thermally Activated Delayed Fluorescence. Chemistry of Materials, 2018, 30, 6389-6399.	3.2	17
98	Systematic Power Factor Enhancement in nâ€Type NiETT/PVDF Composite Films. Advanced Functional Materials, 2018, 28, 1801620.	7.8	34
99	The Direct Arylation Polymerization (DArP) of Wellâ€Defined Alternating Copolymers Based On 5,6â€Dicyano[2,1,3]benzothiadiazole (DCBT). Asian Journal of Organic Chemistry, 2018, 7, 1419-1425.	1.3	8
100	Nonlinear optical components for all-optical probabilistic graphical model. Nature Communications, 2018, 9, 2128.	5.8	10
101	Effect of Isomerization on High-Performance Nonfullerene Electron Acceptors. Journal of the American Chemical Society, 2018, 140, 9140-9147.	6.6	361
102	Influence of dopant size and electron affinity on the electrical conductivity and thermoelectric properties of a series of conjugated polymers. Journal of Materials Chemistry A, 2018, 6, 16495-16505.	5.2	112
103	Simultaneous Enhancement in Electrical Conductivity and Thermopower of nâ€Type NiETT/PVDF Composite Films by Annealing. Advanced Functional Materials, 2018, 28, 1803275.	7.8	39
104	Controllable, Wideâ€Ranging nâ€Doping and pâ€Doping of Monolayer Group 6 Transitionâ€Metal Disulfides and Diselenides. Advanced Materials, 2018, 30, e1802991.	11.1	97
105	Recent Developments in C–H Activation for Materials Science in the Center for Selective C–H Activation. Molecules, 2018, 23, 922.	1.7	47
106	High performance blue-emitting organic light-emitting diodes from thermally activated delayed fluorescence: A guest/host ratio study. Journal of Applied Physics, 2018, 124, .	1.1	25
107	Modification of the fluorinated tin oxide/electron-transporting material interface by a strong reductant and its effect on perovskite solar cell efficiency. Molecular Systems Design and Engineering, 2018, 3, 741-747.	1.7	9
108	Dopant Diffusion in Sequentially Doped Poly(3-hexylthiophene) Studied by Infrared and Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 14518-14527.	1.5	29

#	Article	IF	Citations
109	Absorption Tails of Donor:C ₆₀ Blends Provide Insight into Thermally Activated Charge-Transfer Processes and Polaron Relaxation. Journal of the American Chemical Society, 2017, 139, 1699-1704.	6.6	73
110	Mixing Behavior in Small Molecule:Fullerene Organic Photovoltaics. Chemistry of Materials, 2017, 29, 3062-3069.	3.2	94
111	Electron Transport and Nanomorphology in Solutionâ€Processed Polymeric Semiconductor nâ€Doped with an Airâ€5table Organometallic Dimer. Advanced Electronic Materials, 2017, 3, 1600546.	2.6	15
112	Comparison of the Optical and Electrochemical Properties of Bi(perylene diimide)s Linked through Ortho and Bay Positions. ACS Omega, 2017, 2, 377-385.	1.6	41
113	Crystal structure of 5,6-bis(9 <i>H</i> -carbazol-9-yl)benzo[<i>c</i>][1,2,5]thiadiazole: distortion from a hypothetical higher-symmetry structure. Acta Crystallographica Section C, Structural Chemistry, 2017, 73, 319-324.	0.2	1
114	Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nature Energy, 2017, 2, .	19.8	494
115	Reduction of the Work Function of Gold by N-Heterocyclic Carbenes. Chemistry of Materials, 2017, 29, 3403-3411.	3.2	76
116	Solution-based electrical doping of semiconducting polymer films over a limited depth. Nature Materials, 2017, 16, 474-480.	13.3	121
117	Hybrid Doping of Few-Layer Graphene via a Combination of Intercalation and Surface Doping. ACS Applied Materials & Doping. ACS Applied Materials & Doping. ACS	4.0	11
118	Crystallization Kinetics and Morphology Control of Formamidinium–Cesium Mixedâ€Cation Lead Mixedâ€Halide Perovskite via Tunability of the Colloidal Precursor Solution. Advanced Materials, 2017, 29, 1607039.	11.1	263
119	Rapid, Low Temperature Formation of Imine-Linked Covalent Organic Frameworks Catalyzed by Metal Triflates. Journal of the American Chemical Society, 2017, 139, 4999-5002.	6.6	276
120	Facile Doping and Workâ€Function Modification of Fewâ€Layer Graphene Using Molecular Oxidants and Reductants. Advanced Functional Materials, 2017, 27, 1602004.	7.8	25
121	Synthesis and C–H Functionalization Chemistry of Thiazole-Semicoronenediimides (TsCDIs) and -Coronenediimides (TCDIs). Journal of Organic Chemistry, 2017, 82, 10139-10148.	1.7	8
122	Intermediate-Sized Conjugated Donor Molecules for Organic Solar Cells: Comparison of Benzodithiophene and Benzobisthiazole-Based Cores. Chemistry of Materials, 2017, 29, 7880-7887.	3.2	17
123	Molecular Doping of the Hole-Transporting Layer for Efficient, Single-Step-Deposited Colloidal Quantum Dot Photovoltaics. ACS Energy Letters, 2017, 2, 1952-1959.	8.8	45
124	Doping-induced carrier profiles in organic semiconductors determined from capacitive extraction-current transients. Scientific Reports, 2017, 7, 5397.	1.6	12
125	Multicarbazolyl substituted TTM radicals: red-shift of fluorescence emission with enhanced luminescence efficiency. Materials Chemistry Frontiers, 2017, 1, 2132-2135.	3.2	41
126	Solution-Processed Doping of Trilayer WSe ₂ with Redox-Active Molecules. Chemistry of Materials, 2017, 29, 7296-7304.	3.2	25

#	Article	IF	Citations
127	Efficient and Stable Perovskite Solar Cells Using Molybdenum Tris(dithiolene)s as p-Dopants for Spiro-OMeTAD. ACS Energy Letters, 2017, 2, 2044-2050.	8.8	79
128	Molecular weight tuning of low bandgap polymers by continuous flow chemistry: increasing the applicability of PffBT4T for organic photovoltaics. Journal of Materials Chemistry A, 2017, 5, 18166-18175.	5.2	23
129	Testing the Equivalence between Spatial Averaging and Temporal Averaging in Highly Dilute Solutions. Langmuir, 2017, 33, 14539-14547.	1.6	3
130	Ultrafast Long-Range Charge Separation in Nonfullerene Organic Solar Cells. ACS Nano, 2017, 11, 12473-12481.	7.3	82
131	High Conductivity in a Nonplanar <i>n</i> -Doped Ambipolar Semiconducting Polymer. Chemistry of Materials, 2017, 29, 9742-9750.	3.2	42
132	Beating the thermodynamic limit with photo-activation of n-doping in organic semiconductors. Nature Materials, 2017, 16, 1209-1215.	13.3	139
133	Metalloâ€organic nâ€type thermoelectrics: Emphasizing advances in nickelâ€ethenetetrathiolates. Journal of Applied Polymer Science, 2017, 134, .	1.3	26
134	Electricâ€Fieldâ€Controlled Dopant Distribution in Organic Semiconductors. Advanced Materials, 2017, 29, 1701466.	11.1	30
135	Effective Work Function Reduction of Practical Electrodes Using an Organometallic Dimer. Advanced Functional Materials, 2016, 26, 2493-2502.	7.8	28
136	Understanding How Charged Nanoparticles Electrostatically Assemble and Distribute in 1-D. Langmuir, 2016, 32, 13600-13610.	1.6	9
137	Phosphonic Acids for Interfacial Engineering of Transparent Conductive Oxides. Chemical Reviews, 2016, 116, 7117-7158.	23.0	189
138	Synthesis, characterization, and crystal structures of molybdenum complexes of unsymmetrical electron-poor dithiolene ligands. Polyhedron, 2016, 116, 88-95.	1.0	24
139	Quasi-three-level model applied to measured spectra of nonlinear absorption and refraction in organic molecules. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 780.	0.9	22
140	Impact of a Low Concentration of Dopants on the Distribution of Gap States in a Molecular Semiconductor. Chemistry of Materials, 2016, 28, 2677-2684.	3.2	29
141	Ultra-low p-doping of poly(3-hexylthiophene) and its impact on polymer aggregation and photovoltaic performance. Organic Photonics and Photovoltaics, 2016, 4, .	1.3	3
142	A Study on Reducing Contact Resistance in Solution-Processed Organic Field-Effect Transistors. ACS Applied Materials & Effect Resistance in Solution-Processed Organic Field-Effect Transistors. ACS Applied Materials & Effect Resistance in Solution-Processed Organic Field-Effect Transistors. ACS Applied Materials & Effect Resistance in Solution-Processed Organic Field-Effect Transistors. ACS Applied Materials & Effect Resistance in Solution-Processed Organic Field-Effect Transistors. ACS Applied Materials & Effect Resistance in Solution-Processed Organic Field-Effect Transistors. ACS Applied Materials & Effect Resistance in Solution-Processed Organic Field-Effect Transistors. ACS Applied Materials & Effect Resistance in Solution-Processed Organic Field-Effect Transistors. ACS Applied Materials & Effect Resistance in Solution-Processed Organic Field-Effect Transistors.	4.0	77
143	Remote Molecular Doping of Colloidal Quantum Dot Photovoltaics. ACS Energy Letters, 2016, 1, 922-930.	8.8	40
144	An Introduction to the Electronic Structure of <i>i∈</i> -Conjugated Molecules and Polymers, and to the Concept of Electronic Bands. Materials and Energy, 2016, , 1-18.	2.5	16

#	Article	IF	Citations
145	Understanding the Relationships Among Molecular Structure, Excited-State Properties, and Polarizabilities of π-Conjugated Chromophores. Materials and Energy, 2016, , 393-419.	2.5	1
146	Facile Incorporation of Pd(PPh ₃) ₂ Hal Substituents into Polymethines, Merocyanines, and Perylene Diimides as a Means of Suppressing Intermolecular Interactions. Journal of the American Chemical Society, 2016, 138, 10112-10115.	6.6	29
147	Surface Modification of Indium–Tin Oxide with Functionalized Perylene Diimides: Characterization of Orientation, Electron-Transfer Kinetics and Electronic Structure. Journal of Physical Chemistry C, 2016, 120, 20040-20048.	1.5	38
148	Cross-Linkable Fullerene Derivatives for Solution-Processed n–i–p Perovskite Solar Cells. ACS Energy Letters, 2016, 1, 648-653.	8.8	67
149	Influence of Molecular Aggregation on Electron Transfer at the Perylene Diimide/Indium-Tin Oxide Interface. ACS Applied Materials & Samp; Interfaces, 2016, 8, 34089-34097.	4.0	12
150	Effect of an auxiliary acceptor on D–A–π–A sensitizers for highly efficient and stable dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 12865-12877.	5.2	66
151	Comparison of 3D non-fullerene acceptors for organic photovoltaics based on naphthalene diimide and perylene diimide-substituted 9,9′-bifluorenylidene. RSC Advances, 2016, 6, 70493-70500.	1.7	27
152	Controlled n-Type Doping of Carbon Nanotube Transistors by an Organorhodium Dimer. Nano Letters, 2016, 16, 4329-4334.	4.5	48
153	KO ^{<i>t</i>} Bu-Initiated Aryl Câ€"H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society, 2016, 138, 3946-3949.	6.6	57
154	High-Performance Electron Acceptor with Thienyl Side Chains for Organic Photovoltaics. Journal of the American Chemical Society, 2016, 138, 4955-4961.	6.6	915
155	Mixed-Valence Cations of Di(carbazol-9-yl) Biphenyl, Tetrahydropyrene, and Pyrene Derivatives. Journal of Physical Chemistry C, 2016, 120, 3156-3166.	1.5	19
156	Realization of mid-infrared graphene hyperbolic metamaterials. Nature Communications, 2016, 7, 10568.	5.8	183
157	C–H-Activated Direct Arylation of Strong Benzothiadiazole and Quinoxaline-Based Electron Acceptors. Journal of Organic Chemistry, 2016, 81, 360-370.	1.7	40
158	Hybrid Organic–Inorganic Perovskites (HOIPs): Opportunities and Challenges. Advanced Materials, 2015, 27, 5102-5112.	11.1	372
159	nâ€Dopants Based on Dimers of Benzimidazoline Radicals: Structures and Mechanism of Redox Reactions. Chemistry - A European Journal, 2015, 21, 10878-10885.	1.7	31
160	Synthesis of 8â€Aminoquinolines by Using Carbamate Reagents: Facile Installation and Deprotection of Practical Amidating Groups. Chemistry - A European Journal, 2015, 21, 17200-17204.	1.7	43
161	Dithieno[3,2-a:2′,3′-c]phenazine-based chemical probe for anions: a spectroscopic study of binding. RSC Advances, 2015, 5, 43303-43311.	1.7	4
162	Dopant controlled trap-filling and conductivity enhancement in an electron-transport polymer. Applied Physics Letters, 2015, 106, .	1.5	57

#	Article	IF	Citations
163	Organometallic Dimers: Application to Work-Function Reduction of Conducting Oxides. ACS Applied Materials & Samp; Interfaces, 2015, 7, 4320-4326.	4.0	25
164	Controlled Doping of Largeâ€Area Trilayer MoS ₂ with Molecular Reductants and Oxidants. Advanced Materials, 2015, 27, 1175-1181.	11.1	183
165	Conjugated Polycyanines: A New Class of Materials with Large Thirdâ€Order Optical Nonlinearities. Advanced Optical Materials, 2015, 3, 900-906.	3.6	33
166	PM-IRRAS Determination of Molecular Orientation of Phosphonic Acid Self-Assembled Monolayers on Indium Zinc Oxide. Langmuir, 2015, 31, 5603-5613.	1.6	33
167	Dimers of Nineteen-Electron Sandwich Compounds: An Electrochemical Study of the Kinetics of Their Formation. Organometallics, 2015, 34, 3706-3712.	1.1	7
168	Influence of Molecular Orientation on Charge-Transfer Processes at Phthalocyanine/Metal Oxide Interfaces and Relationship to Organic Photovoltaic Performance. Journal of Physical Chemistry C, 2015, 119, 10304-10313.	1.5	28
169	Investigation of p-dopant diffusion in polymer films and bulk heterojunctions: Stable spatially-confined doping for all-solution processed solar cells. Organic Electronics, 2015, 23, 151-157.	1.4	42
170	Thermo-cross-linkable fullerene for long-term stability of photovoltaic devices. Journal of Materials Chemistry A, 2015, 3, 21856-21863.	5.2	30
171	A Step Toward Efficient Panchromatic Multi-Chromophoric Sensitizers for Dye Sensitized Solar Cells. Chemistry of Materials, 2015, 27, 6305-6313.	3.2	57
172	Stability of inverted organic solar cells with ZnO contact layers deposited from precursor solutions. Energy and Environmental Science, 2015, 8, 592-601.	15.6	103
173	Highly efficient Organic Light-Emitting Diodes from thermally activated delayed fluorescence using a sulfone–carbazole host material. Organic Electronics, 2015, 16, 109-112.	1.4	58
174	Heteroannulated acceptors based on benzothiadiazole. Materials Horizons, 2015, 2, 22-36.	6.4	123
175	Third-order nonlinear optical characterization of organic chromophores using liquid-core optical fibers. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 2455.	0.9	6
176	Molecular doping and tuning threshold voltage in 6,13-bis (triis opropyl sily lethynyl) pentacene/polymer blend transistors. Applied Physics Letters, 2014, 105, .	1.5	31
177	Dimers of Nineteenâ€Electron Sandwich Compounds: Crystal and Electronic Structures, and Comparison of Reducing Strengths. Chemistry - A European Journal, 2014, 20, 15385-15394.	1.7	41
178	Design of Organic Chromophores for All-Optical Signal Processing Applications. Chemistry of Materials, 2014, 26, 549-560.	3.2	123
179	Production of heavily n- and p-doped CVD graphene with solution-processed redox-active metalâ \in organic species. Materials Horizons, 2014, 1, 111-115.	6.4	67
180	A Pyrenylpropyl Phosphonic Acid Surface Modifier for Mitigating the Thermal Resistance of Carbon Nanotube Contacts. Advanced Functional Materials, 2014, 24, 465-471.	7.8	48

#	Article	IF	CITATIONS
181	Inverted Tandem Polymer Solar Cells with Polyethylenimineâ€Modified MoO _X /Al ₂ O ₃ :ZnO Nanolaminate as the Charge Recombination Layers. Advanced Energy Materials, 2014, 4, 1400048.	10.2	21
182	Chemically Controlled Reversible and Irreversible Extraction Barriers Via Stable Interface Modification of Zinc Oxide Electron Collection Layer in Polycarbazoleâ€based Organic Solar Cells. Advanced Functional Materials, 2014, 24, 4671-4680.	7.8	76
183	Enhanced Chargeâ€Carrier Injection and Collection Via Lamination of Doped Polymer Layers pâ€Doped with a Solutionâ€Processible Molybdenum Complex. Advanced Functional Materials, 2014, 24, 2197-2204.	7.8	77
184	Synthesis, crystal structures, and redox behavior of some pentamethylcyclopentadienyl arene ruthenium salts. Journal of Organometallic Chemistry, 2014, 751, 314-320.	0.8	9
185	25th Anniversary Article: Design of Polymethine Dyes for Allâ€Optical Switching Applications: Guidance from Theoretical and Computational Studies. Advanced Materials, 2014, 26, 68-84.	11.1	97
186	Pyrrole[3,2-d:4,5-d′]bisthiazole-bridged bis(naphthalene diimide)s as electron-transport materials. Journal of Materials Chemistry C, 2014, 2, 124-131.	2.7	28
187	Modification of the Galliumâ€Doped Zinc Oxide Surface with Selfâ€Assembled Monolayers of Phosphonic Acids: A Joint Theoretical and Experimental Study. Advanced Functional Materials, 2014, 24, 3593-3603.	7.8	31
188	Phosphorescent light-emitting diodes using triscarbazole/bis(oxadiazole) hosts: comparison of homopolymer blends and random and block copolymers. Journal of Materials Chemistry C, 2014, 2, 6743.	2.7	11
189	Effective Solution―and Vacuumâ€Processed nâ€Doping by Dimers of Benzimidazoline Radicals. Advanced Materials, 2014, 26, 4268-4272.	11.1	139
190	Deposition of loosely bound organic D–A—΀–A′ dyes on sensitized TiO ₂ film: a possible strategy to suppress charge recombination and enhance power conversion efficiency in dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 11229-11234.	5.2	25
191	Tetracyano isoindigo small molecules and their use in n-channel organic field-effect transistors. Physical Chemistry Chemical Physics, 2014, 16, 19345-19350.	1.3	17
192	Effect of Bulky Substituents on Thiopyrylium Polymethine Aggregation in the Solid State: A Theoretical Evaluation of the Implications for All-Optical Switching Applications. Chemistry of Materials, 2014, 26, 6439-6447.	3.2	18
193	Polymethine materials with solid-state third-order optical susceptibilities suitable for all-optical signal-processing applications. Materials Horizons, 2014, 1, 577-581.	6.4	59
194	A Câ€"H Functionalization Protocol for the Direct Synthesis of Benzobisthiazole Derivatives. Journal of Organic Chemistry, 2014, 79, 7766-7771.	1.7	27
195	Photochemical Doping and Tuning of the Work Function and Dirac Point in Graphene Using Photoacid and Photobase Generators. Advanced Functional Materials, 2014, 24, 5147-5156.	7.8	25
196	2-Bromo perylene diimide: synthesis using C–H activation and use in the synthesis of bis(perylene) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
197	Efficient Persistent Room Temperature Phosphorescence in Organic Amorphous Materials under Ambient Conditions. Advanced Functional Materials, 2013, 23, 3386-3397.	7.8	643
198	Structure–processing–property correlations in solution-processed, small-molecule, organic solar cells. Journal of Materials Chemistry C, 2013, 1, 5250.	2.7	22

#	Article	IF	CITATIONS
199	Highâ€Performance nâ€Channel Thinâ€Film Fieldâ€Effect Transistors Based on a Nanowireâ€Forming Polymer. Advanced Functional Materials, 2013, 23, 2060-2071.	7.8	44
200	Mechanistic Study on the Solution-Phase n-Doping of 1,3-Dimethyl-2-aryl-2,3-dihydro-1 <i>H</i> benzoimidazole Derivatives. Journal of the American Chemical Society, 2013, 135, 15018-15025.	6.6	202
201	ITO Interface Modifiers Can Improve <i>V</i> _{OC} in Polymer Solar Cells and Suppress Surface Recombination. Journal of Physical Chemistry Letters, 2013, 4, 4038-4044.	2.1	78
202	Competing Effects of Fluorination on the Orientation of Aromatic and Aliphatic Phosphonic Acid Monolayers on Indium Tin Oxide. Journal of Physical Chemistry C, 2013, 117, 15139-15147.	1.5	40
203	Efficient blue-emitting electrophosphorescent organic light-emitting diodes using 2-(3,5-di(carbazol-9-yl)phenyl)-5-phenyl-1,3,4-oxadiazole as an ambipolar host. RSC Advances, 2013, 3, 23514.	1.7	9
204	Perylene diimide copolymers with dithienothiophene and dithienopyrrole: Use in nâ€channel and ambipolar fieldâ€effect transistors. Journal of Polymer Science Part A, 2013, 51, 1550-1558.	2.5	19
205	Orientation of Phenylphosphonic Acid Self-Assembled Monolayers on a Transparent Conductive Oxide: A Combined NEXAFS, PM-IRRAS, and DFT Study. Langmuir, 2013, 29, 2166-2174.	1.6	61
206	Trifluoromethylated thieno[3,4-b]thiophene-2-ethyl carboxylate as a building block for conjugated polymers. Polymer Chemistry, 2013, 4, 5275.	1.9	17
207	Physical mixtures of small-molecule and polymeric organic semiconductors: comparing thermodynamic behavior and thin-film structure. Journal of Materials Chemistry C, 2013, 1, 778-785.	2.7	11
208	Crosslinking Using Rapid Thermal Processing for the Fabrication of Efficient Solutionâ€Processed Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Materials, 2013, 25, 1739-1744.	11.1	66
209	Investigating the Influence of Interfacial Contact Properties on Open Circuit Voltages in Organic Photovoltaic Performance: Work Function Versus Selectivity. Advanced Energy Materials, 2013, 3, 647-656.	10.2	122
210	Benzo[1,2-b:6,5-b′]dithiophene(dithiazole)-4,5-dione derivatives: synthesis, electronic properties, crystal packing and charge transport. Journal of Materials Chemistry C, 2013, 1, 1467.	2.7	23
211	Bis(carbazolyl) derivatives of pyrene and tetrahydropyrene: synthesis, structures, optical properties, electrochemistry, and electroluminescence. Journal of Materials Chemistry C, 2013, 1, 1638.	2.7	77
212	Fabricating Nanoscale Chemical Gradients with ThermoChemical NanoLithography. Langmuir, 2013, 29, 8675-8682.	1.6	40
213	Reduction of contact resistance by selective contact doping in fullerene n-channel organic field-effect transistors. Applied Physics Letters, 2013, 102, .	1.5	51
214	Bis(naphthalene diimide) derivatives with mono- and dicarbonyl-fused tricyclic heterocyclic bridges as electron-transport materials. Journal of Organic Semiconductors, 2013, 1, 7-15.	1.2	8
215	Recent advances in printable OLED materials and devices. , 2012, , .		0
216	Solution doping of organic semiconductors using air-stable n-dopants. Applied Physics Letters, 2012, 100, .	1.5	86

#	Article	IF	CITATIONS
217	Characterisation of a dipolar chromophore with third-harmonic generation applications in the near-IR. Journal of Materials Chemistry, 2012, 22, 4371.	6.7	17
218	nâ€Doping of Organic Electronic Materials Using Airâ€Stable Organometallics: A Mechanistic Study of Reduction by Dimeric Sandwich Compounds. Chemistry - A European Journal, 2012, 18, 14760-14772.	1.7	64
219	Syntheses of nanostructured Cu- and Ni-based micro-assemblies with selectable 3-D hierarchical biogenic morphologies. Journal of Materials Chemistry, 2012, 22, 1305-1312.	6.7	28
220	Polynorbornenes with pendant perylene diimides for organic electronic applications. Polymer Chemistry, 2012, 3, 2996.	1.9	22
221	Passivation of trap states in unpurified and purified C60 and the influence on organic field-effect transistor performance. Applied Physics Letters, 2012, 101, .	1.5	65
222	Effects of Dendronization on the Linear and Third-Order Nonlinear Optical Properties of Bis(thiopyrylium) Polymethine Dyes in Solution and the Solid State. Chemistry of Materials, 2012, 24, 1606-1618.	3.2	38
223	Impact of Alkyl-Functionalized BTC on Properties of Copper-Based Metal–Organic Frameworks. Crystal Growth and Design, 2012, 12, 3709-3713.	1.4	65
224	Synthesis and characterization of nonamethylrhodocenium and iridocenium hexafluorophosphate salts. Journal of Organometallic Chemistry, 2012, 706-707, 140-143.	0.8	11
225	Ultralow Doping in Organic Semiconductors: Evidence of Trap Filling. Physical Review Letters, 2012, 109, 176601.	2.9	231
226	The Modification of Indium Tin Oxide with Phosphonic Acids: Mechanism of Binding, Tuning of Surface Properties, and Potential for Use in Organic Electronic Applications. Accounts of Chemical Research, 2012, 45, 337-346.	7.6	293
227	Hybrid Rylene Arrays via Combination of Stille Coupling and C–H Transformation as High-Performance Electron Transport Materials. Journal of the American Chemical Society, 2012, 134, 5770-5773.	6.6	128
228	Facile Formation of Graphene P–N Junctions Using Self-Assembled Monolayers. Journal of Physical Chemistry C, 2012, 116, 19095-19103.	1.5	34
229	Transition metal-catalyzed C–H activation as a route to structurally diverse di(arylthiophenyl)-diketopyrrolopyrroles. Journal of Materials Chemistry, 2012, 22, 21392.	6.7	42
230	Built-In Potential in Conjugated Polymer Diodes with Changing Anode Work Function: Interfacial States and Deviation from the Schottky–Mott Limit. Journal of Physical Chemistry Letters, 2012, 3, 1202-1207.	2.1	50
231	A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics. Science, 2012, 336, 327-332.	6.0	1,878
232	Polymethine dyes for all-optical switching applications: a quantum-chemical characterization of counter-ion and aggregation effects on the third-order nonlinear optical response. Chemical Science, 2012, 3, 3103.	3.7	75
233	Biologically Enabled Syntheses of Freestanding Metallic Structures Possessing Subwavelength Pore Arrays for Extraordinary (Surface Plasmonâ€Mediated) Infrared Transmission. Advanced Functional Materials, 2012, 22, 2550-2559.	7.8	38
234	Gold Nanostructures: Biologically-Enabled Syntheses of Freestanding Metallic Structures Possessing Subwavelength Pore Arrays for Extraordinary (Surface Plasmon-Mediated) Infrared Transmission (Adv. Funct. Mater. 12/2012). Advanced Functional Materials, 2012, 22, 2655-2655.	7.8	0

#	Article	IF	Citations
235	Stable Solutionâ€Processed Molecular <i>n</i>)â€Channel Organic Fieldâ€Effect Transistors. Advanced Materials, 2012, 24, 4445-4450.	11.1	67
236	Highâ€Opticalâ€Quality Blends of Anionic Polymethine Salts and Polycarbonate with Enhanced Thirdâ€Order Nonâ€linearities for Siliconâ€Organic Hybrid Devices. Advanced Materials, 2012, 24, OP326-30.	11.1	28
237	Synthesis and characterization of naphthalene diimide/diethynylbenzene copolymers. Polymer, 2012, 53, 1072-1078.	1.8	24
238	nâ€Doping of Organic Electronic Materials using Airâ€Stable Organometallics. Advanced Materials, 2012, 24, 699-703.	11.1	163
239	Patterning: Spatially Modulating Interfacial Properties of Transparent Conductive Oxides: Patterning Work Function with Phosphonic Acid Selfâ€Assembled Monolayers (Adv. Mater. 5/2012). Advanced Materials, 2012, 24, 570-570.	11.1	2
240	Photo-induced charge transfer and nonlinear absorption in dyads composed of a two-photon-absorbing donor and a perylene diimide acceptor. Journal of Materials Chemistry, 2011, 21, 16119.	6.7	41
241	Benzothiadiazole-Dithienopyrrole Donor–Acceptor–Donor and Acceptor–Donor–Acceptor Triads: Synthesis and Optical, Electrochemical, and Charge-Transport Properties. Journal of Physical Chemistry C, 2011, 115, 23149-23163.	1.5	90
242	Steric Effects of the Initiator Substituent Position on the Externally Initiated Polymerization of 2-Bromo-5-iodo-3-hexylthiophene. Macromolecules, 2011, 44, 512-520.	2.2	60
243	Dithienopyrrole–quinoxaline/pyridopyrazine donor–acceptor polymers: synthesis and electrochemical, optical, charge-transport, and photovoltaic properties. Journal of Materials Chemistry, 2011, 21, 4971.	6.7	54
244	Characterization of phosphonic acid binding to zinc oxide. Journal of Materials Chemistry, 2011, 21, 3107.	6.7	103
245	Energy levels, charge injection, charge recombination and dye regeneration dynamics for donor–acceptor l€-conjugated organic dyes in mesoscopic TiO2 sensitized solar cells. Energy and Environmental Science, 2011, 4, 1820.	15.6	140
246	Polymers with Carbazole-Oxadiazole Side Chains as Ambipolar Hosts for Phosphorescent Light-Emitting Diodes. Chemistry of Materials, 2011, 23, 4002-4015.	3.2	67
247	Perylene-3,4,9,10-tetracarboxylic Acid Diimides: Synthesis, Physical Properties, and Use in Organic Electronics. Journal of Organic Chemistry, 2011, 76, 2386-2407.	1.7	950
248	Solution-Processed Molecular Bis(Naphthalene Diimide) Derivatives with High Electron Mobility. Chemistry of Materials, 2011, 23, 3408-3410.	3.2	106
249	Dioxaborine- and Indole-Terminated Polymethines: Effects of Bridge Substitution on Absorption Spectra and Third-Order Polarizabilities. Journal of Physical Chemistry A, 2011, 115, 2160-2168.	1.1	30
250	Rylene and Related Diimides for Organic Electronics. Advanced Materials, 2011, 23, 268-284.	11.1	1,548
251	Nanomanufacturing: Direct Fabrication of Arbitrary-Shaped Ferroelectric Nanostructures on Plastic, Glass, and Silicon Substrates (Adv. Mater. 33/2011). Advanced Materials, 2011, 23, 3740-3740.	11.1	13
252	High-efficiency blue-green electrophosphorescent light-emitting devices using a bis-sulfone as host in the emitting layer. Organic Electronics, 2011, 12, 1314-1318.	1.4	28

#	Article	IF	Citations
253	nâ€Type Organic Semiconductors in Organic Electronics. Advanced Materials, 2010, 22, 3876-3892.	11.1	1,077
254	Pentacene organic field-effect transistors with doped electrode-semiconductor contacts. Organic Electronics, 2010, 11, 860-863.	1.4	65
255	Remote doping of a pentacene transistor: Control of charge transfer by molecular-level engineering. Applied Physics Letters, 2010, 97, .	1.5	36
256	Design of Polymethine Dyes with Large Third-Order Optical Nonlinearities and Loss Figures of Merit. Science, 2010, 327, 1485-1488.	6.0	320
257	A Molybdenum Dithiolene Complex as $\langle i \rangle p \langle i \rangle$ -Dopant for Hole-Transport Materials: A Multitechnique Experimental and Theoretical Investigation. Chemistry of Materials, 2010, 22, 524-531.	3.2	65
258	Acceptor Energy Level Control of Charge Photogeneration in Organic Donor/Acceptor Blends. Journal of the American Chemical Society, 2010, 132, 12919-12926.	6.6	128
259	Dithienopyrrole-based donor–acceptor copolymers: low band-gap materials for charge transport, photovoltaics and electrochromism. Journal of Materials Chemistry, 2010, 20, 123-134.	6.7	154
260	Linear ripples and traveling circular ripples produced on polymers by thermal AFM probes. Physical Review B, 2009, 79, .	1.1	30
261	Effect of phosphonic acid surface modifiers on the work function of indium tin oxide and on the charge injection barrier into organic single-layer diodes. Journal of Applied Physics, 2009, 105, .	1.1	32
262	Direct writing and characterization of poly(p-phenylene vinylene) nanostructures. Applied Physics Letters, 2009, 95, .	1.5	20
263	Tailoring the work function of indium tin oxide electrodes in electrophosphorescent organic light-emitting diodes. Journal of Applied Physics, 2009, 105, 084507.	1.1	70
264	Thermochemical Nanolithography of Multifunctional Nanotemplates for Assembling Nanoâ€Objects. Advanced Functional Materials, 2009, 19, 3696-3702.	7.8	61
265	Growing "Nanofruit―Textures on Photo-Crosslinked SU-8 Surfaces through Layer-by-Layer Grafting of Hyperbranched Poly(Ethyleneimine). Chemistry of Materials, 2009, 21, 476-483.	3.2	48
266	Photophysical Properties of an Alkyne-Bridged Bis(zinc porphyrin)â^Perylene Bis(dicarboximide) Derivative. Journal of Physical Chemistry A, 2009, 113, 10826-10832.	1.1	41
267	Use of a High Electron-Affinity Molybdenum Dithiolene Complex to p-Dope Hole-Transport Layers. Journal of the American Chemical Society, 2009, 131, 12530-12531.	6.6	91
268	Synthesis and Two-Photon Spectrum of a Bis(Porphyrin)-Substituted Squaraine. Journal of the American Chemical Society, 2009, 131, 7510-7511.	6.6	81
269	Copolymers of perylene diimide with dithienothiophene and dithienopyrrole as electron-transport materials for all-polymer solar cells and field-effect transistors. Journal of Materials Chemistry, 2009, 19, 5794.	6.7	165
270	Effects of surface modification of indium tin oxide electrodes on the performance of molecular multilayer organic photovoltaic devices. Journal of Materials Chemistry, 2009, 19, 5298.	6.7	50

#	Article	IF	Citations
271	Room-temperature discotic liquid-crystalline coronene diimides exhibiting high charge-carrier mobility in air. Journal of Materials Chemistry, 2009, 19, 6688.	6.7	107
272	Themed issue: nonlinear optics. The evolving field of nonlinear optics—a personal perspective. Journal of Materials Chemistry, 2009, 19, 7392.	6.7	25
273	Electronic and Vibronic Contributions to Twoâ€Photon Absorption in Donor–Acceptor–Donor Squaraine Chromophores. Chemistry - A European Journal, 2008, 14, 11082-11091.	1.7	49
274	A Nonvolatile Organic Memory Device Using ITO Surfaces Modified by Agâ€Nanodots. Advanced Functional Materials, 2008, 18, 1112-1118.	7.8	78
275	Order of Magnitude Effects of Thiazole Regioisomerism on the Nearâ€IR Twoâ€Photon Crossâ€Sections of Dipolar Chromophores. Advanced Functional Materials, 2008, 18, 794-801.	7.8	8
276	Thick Opticalâ€Quality Films of Substituted Polyacetylenes with Large, Ultrafast Thirdâ€Order Nonlinearities and Application to Image Correlation. Advanced Materials, 2008, 20, 3199-3203.	11.1	18
277	Decamethylcobaltocene as an efficient n-dopant in organic electronic materials and devices. Organic Electronics, 2008, 9, 575-581.	1.4	95
278	Phosphonic Acid Modification of Indiumâ^Tin Oxide Electrodes: Combined XPS/UPS/Contact Angle Studies. Journal of Physical Chemistry C, 2008, 112, 7809-7817.	1.5	207
279	Synthesis of a Nickel Bis(dithiolene) Complex with Strong Near-Infrared Two-Photon Absorption. Molecular Crystals and Liquid Crystals, 2008, 485, 915-927.	0.4	6
280	Theoretical Characterization of the Indium Tin Oxide Surface and of Its Binding Sites for Adsorption of Phosphonic Acid Monolayers. Chemistry of Materials, 2008, 20, 5131-5133.	3.2	138
281	Fluorenyl-substituted silole molecules: geometric, electronic, optical, and device properties. Journal of Materials Chemistry, 2008, 18, 3157.	6.7	41
282	Efficient all-polymer solar cells based on blend of tris(thienylenevinylene)-substituted polythiophene and poly[perylene diimide- <i>alt</i> -bis(dithienothiophene)]. Applied Physics Letters, 2008, 93, .	1.5	123
283	Poly(glycidyl methacrylate)s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography. Journal of Materials Chemistry, 2008, 18, 3316.	6.7	39
284	High performance polymer/BaTiO ₃ nanocomposites based on surface-modified metal oxide nanoparticles using functional phosphonic acids for electronic applications. Materials Research Society Symposia Proceedings, 2008, 1113, 1.	0.1	2
285	A Comparative Study of Charge Mobility Measurements in a Diamine and in a Hexaazatrinaphthylene Using Different Techniques. Molecular Crystals and Liquid Crystals, 2008, 481, 80-93.	0.4	18
286	Commensurate growth and diminishing substrate influence in a multilayer film of a tris(thieno)hexaazatriphenylene derivative on $Au(111)$ studied by scanning tunneling microscopy. Physical Review B, 2008, 77, .	1.1	11
287	Stabilization of the work function of indium tin oxide using organic surface modifiers in organic light-emitting diodes. Applied Physics Letters, 2008, 93, .	1.5	78
288	Substrate-dependent electronic structure of an organic heterojunction. Physical Review B, 2008, 77, .	1.1	30

#	Article	IF	CITATIONS
289	Third-harmonic generation in organic thin films as an alternative to degenerate four-wave mixing ultrafast optical image processing. , 2008, , .		0
290	Nonlinear optical properties of conjugated polymer charge transfer composites. , 2008, , .		0
291	Nonlinear refraction and absorption in highly transmissive one-dimensional metal-organic photonic bandgap structures. , 2008, , .		0
292	Processible Polyacetylene-Based χ ⁽³⁾ Materials for Photonic Applications., 2007,,		0
293	Advances in Two-Photon 3D Microfabrication. , 2007, , .		0
294	Strong two-photon absorption at telecommunications wavelengths in nickel bis(dithiolene) complexes. Optics Letters, 2007, 32, 671.	1.7	23
295	Highly ordered thin films of a bis(dithienothiophene) derivative. Journal of Materials Chemistry, 2007, 17, 4972.	6.7	29
296	High-Speed, Sub-15 nm Feature Size Thermochemical Nanolithography. Nano Letters, 2007, 7, 1064-1069.	4.5	165
297	Incorporation of cobaltocene as an n-dopant in organic molecular films. Journal of Applied Physics, 2007, 102, 014906.	1.1	36
298	Efficient acceptor groups for NLO chromophores: competing inductive and resonance contributions in heterocyclic acceptors derived from 2-dicyanomethylidene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran. Journal of Materials Chemistry, 2007, 17, 2944-2949.	6.7	37
299	Norbornene-Based Copolymers with Iridium Complexes and Bis(carbazolyl)fluorene Groups in Their Side-Chains and Their Use in Light-Emitting Diodes. Chemistry of Materials, 2007, 19, 5602-5608.	3.2	65
300	High electron mobility in nickel bis(dithiolene) complexes. Journal of Materials Chemistry, 2007, 17, 2642.	6.7	61
301	A High-Mobility Electron-Transport Polymer with Broad Absorption and Its Use in Field-Effect Transistors and All-Polymer Solar Cells. Journal of the American Chemical Society, 2007, 129, 7246-7247.	6.6	1,110
302	Two-Photon Absorption in Quadrupolar Bis(acceptor)-Terminated Chromophores with Electron-Rich Bis(heterocycle)vinylene Bridges. Chemistry of Materials, 2007, 19, 432-442.	3.2	66
303	Extended Squaraine Dyes with Large Two-Photon Absorption Cross-Sections. Journal of the American Chemical Society, 2006, 128, 14444-14445.	6.6	205
304	Organic nonlinear optical materials: where we have been and where we are going. Chemical Communications, 2006, , 131-134.	2.2	481
305	Small Molecule Chemisorption on Indiumâ^'Tin Oxide Surfaces: Enhancing Probe Molecule Electron-Transfer Rates and the Performance of Organic Light-Emitting Diodesâ€. Journal of Physical Chemistry B, 2006, 110, 25191-25202.	1.2	48
306	Comparative studies of the geometric and electronic properties of 1,1-disubstituted-2,3,4,5-tetraphenylsiloles and 1,1,2,2-tetramethyl-3,4,5,6-tetraphenyl-1,2-disila-3,5-cyclohexadiene. Journal of Materials Chemistry, 2006, 16, 3814-3822.	6.7	19

#	Article	IF	Citations
307	Bisdioxaborine Polymethines with Large Third-Order Nonlinearities for All-Optical Signal Processing. Journal of the American Chemical Society, 2006, 128, 11362-11363.	6.6	140
308	N-type doping of an electron-transport material by controlled gas-phase incorporation of cobaltocene. Chemical Physics Letters, 2006, 431, 67-71.	1.2	94
309	Two-photon 3D microfabrication with polymer, metal nanocomposite and hybrid materials. , 2006, , .		0
310	Toward the realization of practicable materials for $\#x03C7; (3) based photonic applications., 2006,,.$		0
311	Colorless Molecular Dopants for Low-Operating-Voltage Nematic Liquid Crystals. Molecular Crystals and Liquid Crystals, 2005, 428, 17-32.	0.4	1
312	Strong, Low-Energy Two-Photon Absorption in Extended Amine-Terminated Cyano-Substituted Phenylenevinylene Oligomers. Journal of the American Chemical Society, 2005, 127, 10844-10845.	6.6	124
313	Two-Photon Absorption at Telecommunications Wavelengths in a Dipolar Chromophore with a Pyrrole Auxiliary Donor and Thiazole Auxiliary Acceptor. Journal of the American Chemical Society, 2005, 127, 7282-7283.	6.6	150
314	Aromatic Amines:  A Comparison of Electron-Donor Strengths. Journal of Physical Chemistry A, 2005, 109, 9346-9352.	1.1	134
315	Synthesis of acrylate and norbornene polymers with pendant 2,7-bis(diarylamino)fluorene hole-transport groups. Tetrahedron, 2004, 60, 7169-7176.	1.0	33
316	Electron-Transport Properties and Use in Organic Light-Emitting Diodes of a Bis(dioxaborine)fluorene Derivativeâ€. Journal of Physical Chemistry B, 2004, 108, 8647-8651.	1.2	94
317	Organic light-emitting diodes with multiple photocrosslinkable hole-transport layers. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2726-2732.	2.4	20
318	Effect of Substitution on the Hole Mobility of Bis(diarylamino)biphenyl Derivatives Doped in Poly(Styrene). Chemistry of Materials, 2003, 15, 994-999.	3.2	37
319	Photo-Patternable Hole-Transport Polymers for Organic Light-Emitting Diodes. Chemistry of Materials, 2003, 15, 1491-1496.	3.2	86
320	Bis(dioxaborine) compounds with large two-photon cross sections, and their use in the photodeposition of silver. Chemical Communications, 2003, , 1490-1491.	2.2	90
321	One- and Two-Photon Spectroscopy of Donorâ-'Acceptorâ-'Donor Distyrylbenzene Derivatives:  Effect of Cyano Substitution and Distortion from Planarity. Journal of Physical Chemistry A, 2002, 106, 11470-11480.	1.1	227
322	Five Orders-of-Magnitude Enhancement of Two-Photon Absorption for Dyes on Silver Nanoparticle Fractal Clusters. Journal of Physical Chemistry B, 2002, 106, 6853-6863.	1.2	204
323	Photo-crosslinkable polymers as hole-transport materials for organic light-emitting diodes. Journal of Materials Chemistry, 2002, 12, 1703-1708.	6.7	88
324	Structureâ [^] Property Relationships for Two-Photon Absorbing Chromophores:Â Bis-Donor Diphenylpolyene and Bis(styryl)benzene Derivatives. Journal of the American Chemical Society, 2000, 122, 9500-9510.	6.6	842

#	Article	IF	CITATIONS
325	Electronic and optical properties of conjugated group 8 metallocene derivatives. Chemical Communications, 2000, , 1555-1562.	2.2	194
326	Studies of the Electronic Structure of Metallocene-Based Second-Order Nonlinear Optical Dyes. Journal of the American Chemical Society, 1999, 121, 3715-3723.	6.6	268
327	Synthesis and Properties of a (Diarylamino)ferrocene and Its Radical Cation. Organometallics, 1999, 18, 454-456.	1.1	28
328	Progress toward Device-Quality Second-Order NLO Materials:Â 3. Electrooptic Activity of Polymers ContainingE,E,E-[4-(N,N-Dialkylamino)- phenyl]pentadienylidene-3-phenyl-5-isoxazolone Chromophores. Chemistry of Materials, 1999, 11, 2285-2288.	3.2	32
329	Design of Organic Molecules with Large Two-Photon Absorption Cross Sections. , 1998, 281, 1653-1656.		2,047
330	Direct observation of reduced bond-length alternation in donor/acceptor polyenes. Journal of the American Chemical Society, 1993, 115, 2524-2526.	6.6	199
331	Stronger acceptors can diminish nonlinear optical response in simple donor-acceptor polyenes. Journal of the American Chemical Society, 1993, 115, 3006-3007.	6.6	187
332	Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives. The Journal of Physical Chemistry, 1991, 95, 10631-10643.	2.9	810
333	Nonlinear Optical Properties of Organic Materials. , 0, , 393-437.		14
334	Quantum Transport Properties of Pi-Conjugated Linear Molecular Junctions. , 0, , .		0
335	Towards Metallic-Type Transport in Polymers: Establishing Structure/Property Interrelationships. , 0, ,		0
336	Interface Chemistry for Organic Electronics and Opto-electronics. , 0, , .		0
337	Determination of oxidation level of molecularly doped conjugated polymers with optical spectroscopy. , 0, , .		0
338	Quantum Transport Properties of Pi-Conjugated Linear Molecular Junctions. , 0, , .		0
339	Double Doping of a Low-Ionization-Energy Polythiophene with a Molybdenum Dithiolene Complex. Chemistry of Materials, 0, , .	3.2	4