
Judit Herreros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9192134/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting T-type channels in cancer: What is on and what is off?. Drug Discovery Today, 2022, 27, 743-758.	6.4	3
2	Tetralol derivative NNC-55-0396 induces glioblastoma cell death by activating IRE1α, JNK1 and calcium signaling. Biomedicine and Pharmacotherapy, 2022, 149, 112881.	5.6	4
3	T-type channels in cancer cells: Driving in reverse. Cell Calcium, 2022, 105, 102610.	2.4	3
4	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock 1	0 Tf 50 62	2 Td (edition 1,430

5	FAK Inhibition Induces Glioblastoma Cell Senescence-Like State through p62 and p27. Cancers, 2020, 12, 1086.	3.7	17
6	The rise of T-type channels in melanoma progression and chemotherapeutic resistance. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188364.	7.4	5
7	The Hard-To-Close Window of T-Type Calcium Channels. Trends in Molecular Medicine, 2019, 25, 571-584.	6.7	10
8	Cytoplasmic cyclin D1 regulates glioblastoma dissemination. Journal of Pathology, 2019, 248, 501-513.	4.5	21
9	T-Type Cav3.1 Channels Mediate Progression and Chemotherapeutic Resistance in Glioblastoma. Cancer Research, 2019, 79, 1857-1868.	0.9	18
10	Tâ€ŧype calcium channels drive migration/invasion in <scp>BRAFV</scp> 600E melanoma cells through Snail1. Pigment Cell and Melanoma Research, 2018, 31, 484-495.	3.3	23
11	T-type Ca2+ Channels: T for Targetable. Cancer Research, 2018, 78, 603-609.	0.9	35
12	Phosphorylated Tyr142 β atenin localizes to centrosomes and is regulated by Syk. Journal of Cellular Biochemistry, 2018, 119, 3632-3640.	2.6	6
13	Inhibition of WNT-CTNNB1 signaling upregulates SQSTM1 and sensitizes glioblastoma cells to autophagy blockers. Autophagy, 2018, 14, 619-636.	9.1	60
14	Immunohistochemical analysis of T-type calcium channels in acquired melanocytic naevi and melanoma. British Journal of Dermatology, 2017, 176, 1247-1258.	1.5	24
15	Calcium Channel Expression and Applicability as Targeted Therapies in Melanoma. BioMed Research International, 2015, 2015, 1-7.	1.9	25
16	Nuclear phosphorylated Y142 β-catenin accumulates in astrocytomas and glioblastomas and regulates cell invasion. Cell Cycle, 2015, 14, 3644-3655.	2.6	19
17	Voltage-gated calcium channel blockers deregulate macroautophagy in cardiomyocytes. International Journal of Biochemistry and Cell Biology, 2015, 68, 166-175.	2.8	20
18	Histone deacetylase inhibitors promote glioma cell death by G2 checkpoint abrogation leading to mitotic catastrophe. Cell Death and Disease, 2014, 5, e1435-e1435,	6.3	86

JUDIT HERREROS

#	Article	IF	CITATIONS
19	Tâ€ŧype calcium channel blockers inhibit autophagy and promote apoptosis of malignant melanoma cells. Pigment Cell and Melanoma Research, 2013, 26, 874-885.	3.3	57
20	Chemokines induce axon outgrowth downstream of Hepatocyte Growth Factor and TCF/β-catenin signaling. Frontiers in Cellular Neuroscience, 2013, 7, 52.	3.7	23
21	<i>β</i> -Catenin Signalling in Glioblastoma Multiforme and Glioma-Initiating Cells. Chemotherapy Research and Practice, 2012, 2012, 1-7.	1.6	70
22	Functional expression of voltageâ€gated calcium channels in human melanoma. Pigment Cell and Melanoma Research, 2012, 25, 200-212.	3.3	47
23	Wntâ€3a and Wntâ€3 differently stimulate proliferation and neurogenesis of spinal neural precursors and promote neurite outgrowth by canonical signaling. Journal of Neuroscience Research, 2010, 88, 3011-3023.	2.9	47
24	Signalling by neurotrophins and hepatocyte growth factor regulates axon morphogenesis by differential l²-catenin phosphorylation. Journal of Cell Science, 2008, 121, 2718-2730.	2.0	49
25	Signaling across the synapse: a role for Wnt and Dishevelled in presynaptic assembly and neurotransmitter release. Journal of Cell Biology, 2006, 174, 127-139.	5.2	209
26	WNT-3, Expressed by Motoneurons, Regulates Terminal Arborization of Neurotrophin-3-Responsive Spinal Sensory Neurons. Neuron, 2002, 35, 1043-1056.	8.1	190
27	Lipid microdomains are involved in neurospecific binding and internalisation of clostridial neurotoxins. International Journal of Medical Microbiology, 2001, 291, 447-453.	3.6	22
28	Lipid Rafts Act as Specialized Domains for Tetanus Toxin Binding and Internalization into Neurons. Molecular Biology of the Cell, 2001, 12, 2947-2960.	2.1	154
29	C-terminal half of tetanus toxin fragment C is sufficient for neuronal binding and interaction with a putative protein receptor. Biochemical Journal, 2000, 347, 199.	3.7	45
30	C-terminal half of tetanus toxin fragment C is sufficient for neuronal binding and interaction with a putative protein receptor. Biochemical Journal, 2000, 347, 199-204.	3.7	77
31	Tetanus Toxin Fragment C Binds to a Protein Present in Neuronal Cell Lines and Motoneurons. Journal of Neurochemistry, 2000, 74, 1941-1950.	3.9	76
32	Calcium-dependent Oligomerization of Synaptotagmins I and II. Journal of Biological Chemistry, 1999, 274, 59-66.	3.4	94
33	Neuronal bullet. Trends in Microbiology, 1998, 6, 136.	7.7	0
34	Tetanus toxin inhibits spontaneous quantal release and cleaves VAMP/synaptobrevin. Brain Research, 1995, 699, 165-170.	2.2	11