
## Judit Herreros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9192134/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                | IF               | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|
| 1  | Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /Ov                                                                                                        | erlock 10<br>9.1 | Tf 59742  |
| 2  | Signaling across the synapse: a role for Wnt and Dishevelled in presynaptic assembly and neurotransmitter release. Journal of Cell Biology, 2006, 174, 127-139.                                                        | 5.2              | 209       |
| 3  | WNT-3, Expressed by Motoneurons, Regulates Terminal Arborization of Neurotrophin-3-Responsive<br>Spinal Sensory Neurons. Neuron, 2002, 35, 1043-1056.                                                                  | 8.1              | 190       |
| 4  | Lipid Rafts Act as Specialized Domains for Tetanus Toxin Binding and Internalization into Neurons.<br>Molecular Biology of the Cell, 2001, 12, 2947-2960.                                                              | 2.1              | 154       |
| 5  | Calcium-dependent Oligomerization of Synaptotagmins I and II. Journal of Biological Chemistry, 1999, 274, 59-66.                                                                                                       | 3.4              | 94        |
| 6  | Histone deacetylase inhibitors promote glioma cell death by G2 checkpoint abrogation leading to mitotic catastrophe. Cell Death and Disease, 2014, 5, e1435-e1435.                                                     | 6.3              | 86        |
| 7  | C-terminal half of tetanus toxin fragment C is sufficient for neuronal binding and interaction with a putative protein receptor. Biochemical Journal, 2000, 347, 199-204.                                              | 3.7              | 77        |
| 8  | Tetanus Toxin Fragment C Binds to a Protein Present in Neuronal Cell Lines and Motoneurons. Journal of Neurochemistry, 2000, 74, 1941-1950.                                                                            | 3.9              | 76        |
| 9  | <i>β</i> -Catenin Signalling in Glioblastoma Multiforme and Glioma-Initiating Cells. Chemotherapy<br>Research and Practice, 2012, 2012, 1-7.                                                                           | 1.6              | 70        |
| 10 | Inhibition of WNT-CTNNB1 signaling upregulates SQSTM1 and sensitizes glioblastoma cells to autophagy blockers. Autophagy, 2018, 14, 619-636.                                                                           | 9.1              | 60        |
| 11 | Tâ€ŧype calcium channel blockers inhibit autophagy and promote apoptosis of malignant melanoma cells.<br>Pigment Cell and Melanoma Research, 2013, 26, 874-885.                                                        | 3.3              | 57        |
| 12 | Signalling by neurotrophins and hepatocyte growth factor regulates axon morphogenesis by differential I²-catenin phosphorylation. Journal of Cell Science, 2008, 121, 2718-2730.                                       | 2.0              | 49        |
| 13 | Wntâ€3a and Wntâ€3 differently stimulate proliferation and neurogenesis of spinal neural precursors<br>and promote neurite outgrowth by canonical signaling. Journal of Neuroscience Research, 2010, 88,<br>3011-3023. | 2.9              | 47        |
| 14 | Functional expression of voltageâ€gated calcium channels in human melanoma. Pigment Cell and<br>Melanoma Research, 2012, 25, 200-212.                                                                                  | 3.3              | 47        |
| 15 | C-terminal half of tetanus toxin fragment C is sufficient for neuronal binding and interaction with a putative protein receptor. Biochemical Journal, 2000, 347, 199.                                                  | 3.7              | 45        |
| 16 | T-type Ca2+ Channels: T for Targetable. Cancer Research, 2018, 78, 603-609.                                                                                                                                            | 0.9              | 35        |
| 17 | Calcium Channel Expression and Applicability as Targeted Therapies in Melanoma. BioMed Research<br>International, 2015, 2015, 1-7.                                                                                     | 1.9              | 25        |
| 18 | Immunohistochemical analysis of T-type calcium channels in acquired melanocytic naevi and melanoma. British Journal of Dermatology, 2017, 176, 1247-1258.                                                              | 1.5              | 24        |

JUDIT HERREROS

| #  | Article                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Chemokines induce axon outgrowth downstream of Hepatocyte Growth Factor and TCF/β-catenin signaling. Frontiers in Cellular Neuroscience, 2013, 7, 52.                       | 3.7 | 23        |
| 20 | Tâ€ŧype calcium channels drive migration/invasion in <scp>BRAFV</scp> 600E melanoma cells through<br>Snail1. Pigment Cell and Melanoma Research, 2018, 31, 484-495.         | 3.3 | 23        |
| 21 | Lipid microdomains are involved in neurospecific binding and internalisation of clostridial neurotoxins. International Journal of Medical Microbiology, 2001, 291, 447-453. | 3.6 | 22        |
| 22 | Cytoplasmic cyclin D1 regulates glioblastoma dissemination. Journal of Pathology, 2019, 248, 501-513.                                                                       | 4.5 | 21        |
| 23 | Voltage-gated calcium channel blockers deregulate macroautophagy in cardiomyocytes. International<br>Journal of Biochemistry and Cell Biology, 2015, 68, 166-175.           | 2.8 | 20        |
| 24 | Nuclear phosphorylated Y142 β-catenin accumulates in astrocytomas and glioblastomas and regulates cell invasion. Cell Cycle, 2015, 14, 3644-3655.                           | 2.6 | 19        |
| 25 | T-Type Cav3.1 Channels Mediate Progression and Chemotherapeutic Resistance in Glioblastoma. Cancer<br>Research, 2019, 79, 1857-1868.                                        | 0.9 | 18        |
| 26 | FAK Inhibition Induces Glioblastoma Cell Senescence-Like State through p62 and p27. Cancers, 2020, 12, 1086.                                                                | 3.7 | 17        |
| 27 | Tetanus toxin inhibits spontaneous quantal release and cleaves VAMP/synaptobrevin. Brain Research, 1995, 699, 165-170.                                                      | 2.2 | 11        |
| 28 | The Hard-To-Close Window of T-Type Calcium Channels. Trends in Molecular Medicine, 2019, 25, 571-584.                                                                       | 6.7 | 10        |
| 29 | Phosphorylated Tyr142 βâ€catenin localizes to centrosomes and is regulated by Syk. Journal of Cellular<br>Biochemistry, 2018, 119, 3632-3640.                               | 2.6 | 6         |
| 30 | The rise of T-type channels in melanoma progression and chemotherapeutic resistance. Biochimica Et<br>Biophysica Acta: Reviews on Cancer, 2020, 1873, 188364.               | 7.4 | 5         |
| 31 | Tetralol derivative NNC-55-0396 induces glioblastoma cell death by activating IRE1α, JNK1 and calcium signaling. Biomedicine and Pharmacotherapy, 2022, 149, 112881.        | 5.6 | 4         |
| 32 | Targeting T-type channels in cancer: What is on and what is off?. Drug Discovery Today, 2022, 27, 743-758.                                                                  | 6.4 | 3         |
| 33 | T-type channels in cancer cells: Driving in reverse. Cell Calcium, 2022, 105, 102610.                                                                                       | 2.4 | 3         |
| 34 | Neuronal bullet. Trends in Microbiology, 1998, 6, 136.                                                                                                                      | 7.7 | 0         |