Sherri L Surman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9191922/publications.pdf

Version: 2024-02-01

430874 434195 34 968 18 31 citations h-index g-index papers 34 34 34 1550 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Thymic lymphoproliferative disease after successful correction of CD40 ligand deficiency by gene transfer in mice. Nature Medicine, 1998, 4, 1253-1260.	30.7	143
2	Eosinophils Promote Antiviral Immunity in Mice Infected with Influenza A Virus. Journal of Immunology, 2017, 198, 3214-3226.	0.8	133
3	Control of Gammaherpesvirus Latency by Latent Antigen-Specific Cd8+ T Cells. Journal of Experimental Medicine, 2000, 192, 943-952.	8.5	80
4	Baseline Serum Vitamin A and D Levels Determine Benefit of Oral Vitamin A&D Supplements to Humoral Immune Responses Following Pediatric Influenza Vaccination. Viruses, 2019, 11, 907.	3.3	69
5	Vitamin A Deficiency Disrupts Vaccine-Induced Antibody-Forming Cells and the Balance of IgA/IgG Isotypes in the Upper and Lower Respiratory Tract. Viral Immunology, 2012, 25, 341-344.	1.3	37
6	Characterization of innate responses to influenza virus infection in a novel lung type I epithelial cell model. Journal of General Virology, 2014, 95, 350-362.	2.9	37
7	An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens. PLoS Pathogens, 2016, 12, e1005804.	4.7	37
8	Phenotypes and functions of persistent Sendai virus-induced antibody forming cells and CD8+ T cells in diffuse nasal-associated lymphoid tissue typify lymphocyte responses of the gut. Virology, 2011, 410, 429-436.	2.4	36
9	Respiratory Tract Epithelial Cells Express Retinaldehyde Dehydrogenase ALDH1A and Enhance IgA Production by Stimulated B Cells in the Presence of Vitamin A. PLoS ONE, 2014, 9, e86554.	2.5	35
10	Complex sex-biased antibody responses: estrogen receptors bind estrogen response elements centered within immunoglobulin heavy chain gene enhancers. International Immunology, 2019, 31, 141-156.	4.0	35
11	Safety and Immunogenicity of an Intranasal Sendai Virus-Based Human Parainfluenza Virus Type 1 Vaccine in 3- to 6-Year-Old Children. Vaccine Journal, 2015, 22, 298-303.	3.1	34
12	Influences of Vitamin A on Vaccine Immunogenicity and Efficacy. Frontiers in Immunology, 2019, 10, 1576.	4.8	34
13	Intranasal Administration of Retinyl Palmitate with a Respiratory Virus Vaccine Corrects Impaired Mucosal IgA Response in the Vitamin A-Deficient Host. Vaccine Journal, 2014, 21, 598-601.	3.1	31
14	Consequences of Vitamin A Deficiency: Immunoglobulin Dysregulation, Squamous Cell Metaplasia, Infectious Disease, and Death. International Journal of Molecular Sciences, 2020, 21, 5570.	4.1	28
15	Carboxy-terminal residues of major histocompatibility complex class II-associated peptides control the presentation of the bacterial superantigen toxic shock syndrome toxin-1 to T cells. European Journal of Immunology, 1997, 27, 772-781.	2.9	24
16	Matters of life and death: How estrogen and estrogen receptor binding to the immunoglobulin heavy chain locus may influence outcomes of infection, allergy, and autoimmune disease. Cellular Immunology, 2019, 346, 103996.	3.0	20
17	Vitamin A Corrects Tissue Deficits in Dietâ€Induced Obese Mice and Reduces Influenza Infection After Vaccination and Challenge. Obesity, 2020, 28, 1631-1636.	3.0	19
18	Saccharomyces cerevisiae -derived virus-like particle parvovirus B19 vaccine elicits binding and neutralizing antibodies in a mouse model for sickle cell disease. Vaccine, 2017, 35, 3615-3620.	3.8	18

#	Article	IF	CITATIONS
19	Sendai virus recombinant vaccine expressing a secreted, unconstrained respiratory syncytial virus fusion protein protects against RSV in cotton rats. International Immunology, 2015, 27, 229-236.	4.0	17
20	Vitamin A deficient mice exhibit increased viral antigens and enhanced cytokine/chemokine production in nasal tissues following respiratory virus infection despite the presence of FoxP3 + T cells. International Immunology, 2016, 28, 139-152.	4.0	17
21	Sendai virus-based RSV vaccine protects against RSV challenge in an in vivo maternal antibody model. Vaccine, 2014, 32, 3264-3273.	3.8	16
22	A Sendai virus recombinant vaccine expressing a gene for truncated human metapneumovirus (hMPV) fusion protein protects cotton rats from hMPV challenge. Virology, 2017, 509, 60-66.	2.4	11
23	From Influenza Virus Infections to Lupus: Synchronous Estrogen Receptor <i>î±</i> and RNA Polymerase II Binding Within the Immunoglobulin Heavy Chain Locus. Viral Immunology, 2020, 33, 307-315.	1.3	9
24	Role of Vitamins A and D in BCR-ABL Arfâ^'/â^' Acute Lymphoblastic Leukemia. Scientific Reports, 2020, 10, 2359.	3.3	8
25	Clonally Related CD8+T Cells Responsible for Rapid Population of Both Diffuse Nasal-Associated Lymphoid Tissue and Lung After Respiratory Virus Infection. Journal of Immunology, 2011, 187, 835-841.	0.8	7
26	Enhanced CD103 Expression and Reduced Frequencies of Virus-Specific CD8+ T Cells Among Airway Lymphocytes After Influenza Vaccination of Mice Deficient in Vitamins A + D. Viral Immunology, 2017, 3737-743.	30,1.3	7
27	Clearance of HIV Type 1 Envelope Recombinant Sendai Virus Depends on CD4+T Cells and Interferon-Î ³ But Not B Cells, CD8+T Cells, or Perforin. AIDS Research and Human Retroviruses, 2010, 26, 783-793.	1.1	5
28	A highly sensitive single-cell assay detects T-helper cell responses missed by conventional interleukin-2-based methods. Journal of Immunological Methods, 2002, 260, 279-283.	1.4	4
29	HIV-1 vaccine design: Harnessing diverse lymphocytes to conquer a diverse pathogen. Hum Vaccin, 2009, 5, 268-271.	2.4	4
30	CD4 + T cells support establishment of RSV-specific IgG and IgA antibody secreting cells in the upper and lower murine respiratory tract following RSV infection. Vaccine, 2017, 35, 2617-2621.	3.8	4
31	Murine Monoclonal Antibodies for Antigenic Discrimination of HIV-1 Envelope Proteins. Viral Immunology, 2016, 29, 64-70.	1.3	3
32	Nuclear Receptors, Ligands and the Mammalian B Cell. International Journal of Molecular Sciences, 2020, 21, 4997.	4.1	3
33	Might Routine Vitamin A Monitoring in Cystic Fibrosis Patients Reduce Virus-Mediated Lung Pathology?. Frontiers in Immunology, 2021, 12, 704391.	4.8	2
34	Persistent hypogammaglobulinemia in pediatric solid organ transplant recipients. Clinical Transplantation, 2020, 34, e14021.	1.6	1