
ludovic Pinard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9191305/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	n-Hexadecane hydroisomerization over Pt-HBEA catalysts. Quantification and effect of the intimacy between metal and protonic sites. Journal of Catalysis, 2013, 307, 122-131.	6.2	183
2	The Cu–ZnO synergy in methanol synthesis from CO2, Part 1: Origin of active site explained by experimental studies and a sphere contact quantification model on Cu + ZnO mechanical mixtures. Journal of Catalysis, 2015, 324, 41-49.	6.2	148
3	Combination of a non-thermal plasma and a catalyst for toluene removal from air: Manganese based oxide catalysts. Applied Catalysis B: Environmental, 2006, 68, 92-98.	20.2	146
4	Catalytic fast pyrolysis of biomass: superior selectivity of hierarchical zeolites to aromatics. Green Chemistry, 2017, 19, 5442-5459.	9.0	143
5	Ethanol transformation into hydrocarbons on ZSM-5 zeolites: Influence of Si/Al ratio on catalytic performances and deactivation rate. Study of the radical species role. Applied Catalysis A: General, 2012, 443-444, 171-180.	4.3	126
6	Bifunctional mechanism of dichloromethane oxidation over Pt/Al2O3: CH2Cl2 disproportionation over alumina and oxidation over platinum. Journal of Catalysis, 2012, 291, 104-109.	6.2	84
7	Hydroisomerization of long-chain n-alkanes on bifunctional Pt/zeolite catalysts: Effect of the zeolite structure on the product selectivity and on the reaction mechanism. Applied Catalysis A: General, 2008, 336, 23-28.	4.3	83
8	Methanol synthesis from CO2 hydrogenation over copper based catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2013, 110, 131-145.	1.7	82
9	Catalytic oxidation of volatile organic compounds. Applied Catalysis B: Environmental, 2000, 27, 17-26.	20.2	77
10	On the remarkable resistance to coke formation of nanometer-sized and hierarchical MFI zeolites during ethanol to hydrocarbons transformation. Journal of Catalysis, 2015, 328, 165-172.	6.2	76
11	Catalytic oxidation of volatile organic compounds (VOCs) Oxidation of o-xylene over Pt/HBEA catalysts. Applied Catalysis B: Environmental, 2003, 46, 371-379.	20.2	70
12	Oxidation of chlorinated hydrocarbons over Pt zeolite catalysts 1-mechanism of dichloromethane transformation over PtNaY catalysts. Journal of Catalysis, 2003, 215, 234-244.	6.2	62
13	Catalytic Fast Pyrolysis of Biomass over Microporous and Hierarchical Zeolites: Characterization of Heavy Products. ACS Sustainable Chemistry and Engineering, 2018, 6, 4717-4728.	6.7	62
14	On the mechanism of the catalytic destruction of dichloromethane over Pt zeolite catalysts. Applied Catalysis B: Environmental, 2004, 51, 1-8.	20.2	61
15	Mechanisms of coke growth on mordenite zeolite. Journal of Catalysis, 2016, 344, 354-364.	6.2	58
16	Particular properties of the coke formed on nano-sponge *BEA zeolite during ethanol-to-hydrocarbons transformation. Journal of Catalysis, 2016, 336, 1-10.	6.2	56
17	Bifunctional Hydrogenating/Acid Catalysis: Quantification of the Intimacy Criterion. Catalysis Letters, 2013, 143, 587-591.	2.6	53
18	Effect of the metal promoter on the performances of H-ZSM5 in ethylene aromatization. Catalysis Today, 2017, 289, 62-69.	4.4	51

#	Article	IF	CITATIONS
19	Growth mechanism of coke on HBEA zeolite during ethanol transformation. Journal of Catalysis, 2013, 299, 284-297.	6.2	50
20	New routes for complete regeneration of coked zeolite. Applied Catalysis B: Environmental, 2017, 219, 82-91.	20.2	50
21	Characterization of acid-base catalysts through model reactions. Catalysis Reviews - Science and Engineering, 2018, 60, 337-436.	12.9	48
22	Alternative fuel production by catalytic hydroliquefaction of solid municipal wastes, primary sludges and microalgae. Bioresource Technology, 2013, 142, 1-8.	9.6	45
23	Propane aromatization on hierarchical Ga/HZSM-5 catalysts. Journal of Catalysis, 2018, 366, 223-236.	6.2	45
24	Preparation of Single-Crystal "House-of-Cards―like ZSM-5 and Their Performance in Ethanol-to-Hydrocarbon Conversion. Chemistry of Materials, 2019, 31, 4639-4648.	6.7	45
25	Catalytic properties of Ga-containing MFI-type zeolite in cyclohexane dehydrogenation and propane aromatization. Journal of Catalysis, 2018, 365, 376-390.	6.2	40
26	Mitigating coking during methylcyclohexane transformation on HZSM-5 zeolites with additional porosity. Journal of Catalysis, 2014, 320, 118-126.	6.2	39
27	Hydroliquefaction of green wastes to produce fuels. Bioresource Technology, 2011, 102, 6200-6207.	9.6	37
28	Exploring the impact of zeolite porous voids in liquid phase reactions: The case of glycerol etherification by tert-butyl alcohol. Journal of Catalysis, 2018, 365, 249-260.	6.2	34
29	On the involvement of radical "coke―in ethanol conversion to hydrocarbons over HZSM-5 zeolite. Catalysis Today, 2013, 218-219, 57-64.	4.4	31
30	Oxidation of chlorinated hydrocarbons over zeolite catalysts 2.ÂComparative study of dichloromethane transformation over NaX andÂNaYÂzeolites. Journal of Catalysis, 2004, 221, 662-665.	6.2	29
31	BEA zeolite nanocrystals dispersed over alumina for n-hexadecane hydroisomerization. Microporous and Mesoporous Materials, 2013, 166, 161-166.	4.4	29
32	Impact of extreme downsizing of *BEA-type zeolite crystals on n-hexadecane hydroisomerization. New Journal of Chemistry, 2016, 40, 4335-4343.	2.8	28
33	Biological pretreatment for production of lignocellulosic biofuel. Bioresource Technology, 2012, 117, 234-241.	9.6	26
34	Eco-compatible zeolite-catalysed continuous halogenation of aromatics. Green Chemistry, 2016, 18, 4714-4724.	9.0	24
35	Formation of weak and strong BrÃnsted acid sites during alkaline treatment on MOR zeolite. Applied Catalysis A: General, 2016, 526, 95-104.	4.3	21
36	Study on the catalytic performance of different crystal morphologies of HZSM-5 zeolites for the production of biodiesel: a strategy to increase catalyst effectiveness. Catalysis Science and Technology, 2019, 9, 5456-5471.	4.1	21

#	Article	IF	CITATIONS
37	Mechanisms of aromatization of dilute ethylene on HZSM-5 and on Zn/HZSM-5 catalysts. Applied Catalysis A: General, 2021, 611, 117974.	4.3	21
38	Identification of the carbonaceous compounds present on a deactivated cobalt based Fischer–Trospch catalyst resistant to "rejuvenation treatment― Applied Catalysis A: General, 2011, 406, 73-80.	4.3	20
39	Hydroisomerization of n-hexadecane over bifunctional Pt-HBEA catalysts. Influence of Si/Al ratio on activity selectivity. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114, 661-673.	1.7	18
40	Impact of desilication of *BEA zeolites on the catalytic performance in hydroisomerization of n -C 10. Applied Catalysis A: General, 2018, 551, 1-12.	4.3	18
41	Sulfonated graphenes: Efficient solid acid catalyst for the glycerol valorization. Applied Catalysis A: General, 2019, 580, 167-177.	4.3	18
42	Comparison of the performances of Pt/HBEA nano dispersed over alumina and Pt/ZSM-22 catalysts in n-hexadecane hydroisomerization. Reaction Kinetics, Mechanisms and Catalysis, 2012, 107, 285-294.	1.7	15
43	Mechanism and Kinetic of Coke Oxidation by Nonthermal Plasma in Fixed-Bed Dielectric Barrier Reactor. Journal of Physical Chemistry C, 2019, 123, 9168-9175.	3.1	15
44	Zeolite shape selectivity impact on LDPE and PP catalytic pyrolysis products and coke nature. Sustainable Energy and Fuels, 2022, 6, 1587-1602.	4.9	15
45	How do the products in methane dehydroaromatization impact the distinct stages of the reaction?. Applied Catalysis B: Environmental, 2022, 309, 121274.	20.2	15
46	Ethanol transformation into higher hydrocarbons over HZSM-5 zeolite: Direct detection of radical species by in situ EPR spectroscopy. Catalysis Communications, 2012, 27, 119-123.	3.3	14
47	Beneficial changes in coke properties with alkaline treatment on aluminum-rich mordenite. Journal of Catalysis, 2017, 353, 28-36.	6.2	14
48	Deactivation mechanism and regeneration study of Zn/HZSM-5 catalyst in ethylene transformation. Applied Catalysis A: General, 2021, 611, 117976.	4.3	14
49	Dichloromethane transformation over bifunctional PtFAU catalysts. Influence of the acidobasicity of the zeolite. Comptes Rendus Chimie, 2005, 8, 457-463.	0.5	13
50	Conduction heat transfer in a cylindrical dielectric barrier discharge reactor. Applied Thermal Engineering, 2009, 29, 1259-1263.	6.0	13
51	Impact of the BEA zeolite morphology on isobutane adsorption followed by Reversed-Flow Inverse Gas Chromatography. Journal of Chromatography A, 2012, 1260, 206-214.	3.7	13
52	Hydrogenation of CO2 into hydrocarbons over bifunctional system Cu–ZnO/Al2O3â€+â€HZSM-5: Effect of proximity between the acidic and methanol synthesis sites. Comptes Rendus Chimie, 2015, 18, 1264-1269.	0.5	13
53	Mordenite etching in pyridine: Textural and chemical properties rationalized by toluene disproportionation and n-hexane cracking. Journal of Catalysis, 2019, 374, 409-421.	6.2	13
54	Regeneration of a Coked Zeolite via Nonthermal Plasma Process: A Parametric Study. Plasma Chemistry and Plasma Processing, 2019, 39, 929-936.	2.4	13

#	Article	IF	CITATIONS
55	Catalytic oxidation of volatile organic compounds (VOCs). Oxidation of o-xylene over Pd and Pt/HFAU catalysts. Comptes Rendus De L'Academie Des Sciences - Series IIc: Chemistry, 2001, 4, 41-47.	0.1	12
56	Synthesis of nanostructured catalysts by laser pyrolysis. Catalysis Today, 2006, 116, 6-11.	4.4	12
57	Synthesis of hierarchical ZSM-48 nano-zeolites. New Journal of Chemistry, 2018, 42, 4457-4464.	2.8	12
58	Regeneration of an aged hydrodesulfurization catalyst: Conventional thermal vs non-thermal plasma technology. Fuel, 2021, 306, 121674.	6.4	12
59	Non-thermal plasma: A fast and efficient template removal approach allowing for new insights to the SBA-15 structure. Microporous and Mesoporous Materials, 2020, 296, 110015.	4.4	11
60	Methanol and ethanol conversion into hydrocarbons over H-ZSM-5 catalyst. European Physical Journal: Special Topics, 2015, 224, 1817-1830.	2.6	10
61	The radical internal coke structure as a fingerprint of the zeolite framework. Microporous and Mesoporous Materials, 2019, 289, 109617.	4.4	10
62	Study of catalyst deactivation during 1,3-butanediol dehydration to produce butadiene. Microporous and Mesoporous Materials, 2021, 320, 111066.	4.4	9
63	Effect of Na exchange of a HBEA zeolite on the activity and the selectivity of a bifunctional Pt-HBEA catalyst for n-hexadecane hydroisomerization. Comparison with a Pt-HZSM-22 catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2010, 100, 1.	1.7	8
64	Toolbox of Post‧ynthetic Mordenite Modification Strategies: Impact on Textural, Acidic and Catalytic Properties. ChemCatChem, 2019, 11, 4581-4592.	3.7	8
65	Impact of the Framework Type on the Regeneration of Coked Zeolites by Non-Thermal Plasma in a Fixed Bed Dielectric Barrier Reactor. Catalysts, 2019, 9, 985.	3.5	8
66	Desilication of *BEA zeolites using different alkaline media: Impact on catalytic cracking of n-hexane. Microporous and Mesoporous Materials, 2018, 267, 150-163.	4.4	7
67	How does the balance of metal and acid functions on the benchmark Mo/ZSM-5 catalyst drive the Methane dehydroaromatization reaction?. Catalysis Today, 2022, 405-406, 168-181.	4.4	7
68	Hydroconversion of n-decane on Pt/HZSM-5 bifunctional catalysts: effect of the Si/Al ratio of the zeolite on selectivities. Reaction Kinetics, Mechanisms and Catalysis, 2010, 101, 209-219.	1.7	6
69	Interactions of H2on the Isobutane Adsorption over Bifunctional Catalyst PtHBEA Revealed by Reversed-Flow Inverse Gas Chromatography. Journal of Physical Chemistry C, 2015, 119, 1791-1799.	3.1	6
70	Impact of Chain Length on the Catalytic Performance in Hydroisomerization of n-Alkanes Over Commercial and Alkaline Treated *BEA Zeolites. Catalysis Letters, 2018, 148, 3051-3061.	2.6	6
71	Green-aromatic production in typical conditions of fluidized catalytic cracking. Fuel, 2019, 254, 115684.	6.4	6
72	Elimination of Coke in an Aged Hydrotreating Catalyst via a Non-Thermal Plasma Process: Comparison with a Coked Zeolite. Catalysts, 2019, 9, 783.	3.5	6

#	Article	IF	CITATIONS
73	Pyridine assisted desilication of mordenite. Applied Catalysis A: General, 2019, 583, 117139.	4.3	5
74	Transformation of Dilute Ethylene at High Temperature on Micro- and Nano-Sized H-ZSM-5 Zeolites. Catalysts, 2021, 11, 282.	3.5	5
75	Understanding the mechanism of large-scale template elimination during calcination of Mcm-41. Microporous and Mesoporous Materials, 2022, 338, 111981.	4.4	5
76	Catalytic transformation of dichloromethane over NaFAU(X,Y) and HFAU(Y). Studies in Surface Science and Catalysis, 2000, 143, 369-376.	1.5	4
77	Evaluation of humic fractions potential to produce bio-oil through catalytic hydroliquefaction. Bioresource Technology, 2013, 149, 465-469.	9.6	4
78	Bio oil synthesis by coupling biological biomass pretreatment and catalytic hydroliquefaction process. Bioresource Technology, 2014, 156, 389-394.	9.6	4
79	Solid-phase and precipitation synthesis of Ti-pyrophosphate for the catalytic oxydehydrogenation of n-butane. Comptes Rendus Chimie, 2017, 20, 1037-1046.	0.5	4
80	Synthesis of Hierarchical MOR-Type Zeolites with Improved Catalytic Properties. Molecules, 2021, 26, 4508.	3.8	4
81	How do zeolite-templated carbons grow?. Materials Today Chemistry, 2022, 26, 101053.	3.5	4
82	Molecular sieve catalysts as substitutes for metal chlorides in the chemical industry: Some selected examples. Pure and Applied Chemistry, 2011, 84, 509-527.	1.9	3
83	Impact of Crystal Size on the Acidity and the Involved Interactions Studied by Conventional and Innovative Techniques. Journal of Physical Chemistry C, 2017, 121, 18725-18737.	3.1	3
84	Syngas conversion into light hydrocarbons over bifunctional catalyst: Effect of the density of contact between Cu-ZnO-Al2O3 and SAPO-34. Applied Catalysis A: General, 2022, 643, 118757.	4.3	3
85	Hydroisomerization of n-hexadecane on Pt/HBEA bifunctional catalysts: effect of the zeolite crystallites size on the reaction scheme. Studies in Surface Science and Catalysis, 2008, 174, 1107-1110.	1.5	2
86	New Approach to the Acidity Characterization of Pristine Zeolite Crystals by Ethylene Using Reversed-Flow Inverse Gas Chromatography (RF-IGC). Journal of Physical Chemistry C, 2017, 121, 2738-2747.	3.1	2
87	<i>In situ</i> FTIR spectroscopy to unravel the bifunctional nature of aromatics hydrogenation synergy on zeolite/metal catalysts. Catalysis Science and Technology, 2022, 12, 1117-1129.	4.1	2
88	Hydrogénation du CO2Âen hydrocarbures sur des catalyseurs bifonctionnels CFA-HZSM-5. Comptes Rendus Chimie, 2015, 18, 241-249.	0.5	1
89	Cleaner technology for the production of linear long chain α-olefins through a "millisecond― oxidative cracking process. Applied Catalysis A: General, 2021, 610, 117944.	4.3	1
90	Electron transfers in graphitized HZSM-5 zeolites. Physical Chemistry Chemical Physics, 2021, 23, 1914-1922.	2.8	1

#	Article	IF	CITATIONS
91	Regeneration of an Aged Hydrodesulfurization Catalyst by Non-Thermal Plasma: Characterization of Refractory Coke Molecules. Catalysts, 2021, 11, 1153.	3.5	0
92	Effet du précokage de la zéolithe hmcm-22 sur la transformation du n-decane. Annales De Chimie: Science Des Materiaux, 2010, 35, 345-354.	0.4	0
93	Cleaner technology for the production of linear long-chain α-olefins through a "millisecond― oxidative cracking process: a positive impact of the reactant carbon chain length. New Journal of Chemistry, 0, , .	2.8	0