List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9190947/publications.pdf Version: 2024-02-01

		117625	58581
114	7,203	34	82
papers	citations	h-index	g-index
117	117	117	9183
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathologica, 2012, 123, 473-484.	7.7	863
2	Dissecting the genomic complexity underlying medulloblastoma. Nature, 2012, 488, 100-105.	27.8	765
3	Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma. Cancer Cell, 2017, 32, 520-537.e5.	16.8	716
4	New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell, 2016, 164, 1060-1072.	28.9	702
5	Subgroup-Specific Prognostic Implications of <i>TP53</i> Mutation in Medulloblastoma. Journal of Clinical Oncology, 2013, 31, 2927-2935.	1.6	381
6	Next-generation personalised medicine for high-risk paediatric cancer patients – The INFORM pilot study. European Journal of Cancer, 2016, 65, 91-101.	2.8	262
7	Clinical, Radiologic, Pathologic, and Molecular Characteristics of Long-Term Survivors of Diffuse Intrinsic Pontine Clioma (DIPG): A Collaborative Report From the International and European Society for Pediatric Oncology DIPG Registries. Journal of Clinical Oncology, 2018, 36, 1963-1972.	1.6	250
8	Childhood cancer predisposition syndromes—A concise review and recommendations by the Cancer Predisposition Working Group of the Society for Pediatric Oncology and Hematology. American Journal of Medical Genetics, Part A, 2017, 173, 1017-1037.	1.2	200
9	Diffuse high-grade gliomas with H3 K27M mutations carry a dismal prognosis independent of tumor location. Neuro-Oncology, 2018, 20, 123-131.	1.2	184
10	Treatment of young children with localized medulloblastoma by chemotherapy alone: Results of the prospective, multicenter trial HIT 2000 confirming the prognostic impact of histology. Neuro-Oncology, 2011, 13, 669-679.	1.2	149
11	<i>FSTL5</i> Is a Marker of Poor Prognosis in Non-WNT/Non-SHH Medulloblastoma. Journal of Clinical Oncology, 2011, 29, 3852-3861.	1.6	143
12	Prognostic significance of clinical, histopathological, and molecular characteristics of medulloblastomas in the prospective HIT2000 multicenter clinical trial cohort. Acta Neuropathologica, 2014, 128, 137-149.	7.7	125
13	Frequency, Riskâ€Factors and Survival of Children With Atypical Teratoid Rhabdoid Tumors (AT/RT) of the CNS Diagnosed between 1988 and 2004, and Registered to the German HIT Database. Pediatric Blood and Cancer, 2011, 57, 978-985.	1.5	121
14	Treatment of Children and Adolescents With Metastatic Medulloblastoma and Prognostic Relevance of Clinical and Biologic Parameters. Journal of Clinical Oncology, 2016, 34, 4151-4160.	1.6	121
15	The Pediatric Precision Oncology INFORM Registry: Clinical Outcome and Benefit for Patients with Very High-Evidence Targets. Cancer Discovery, 2021, 11, 2764-2779.	9.4	110
16	Survival benefit for patients with diffuse intrinsic pontine glioma (DIPG) undergoing re-irradiation at first progression: A matched-cohort analysis on behalf of the SIOP-E-HGG/DIPG working group. European Journal of Cancer, 2017, 73, 38-47.	2.8	101
17	<i>TP53</i> Mutation Is Frequently Associated With <i>CTNNB1</i> Mutation or <i>MYCN</i> Amplification and Is Compatible With Long-Term Survival in Medulloblastoma. Journal of Clinical Oncology, 2010, 28, 5188-5196.	1.6	100
18	Prognostic Relevance of Clinical and Biological Risk Factors in Childhood Medulloblastoma: Results of Patients Treated in the Prospective Multicenter Trial HIT'91. Clinical Cancer Research, 2007, 13, 2651-2657.	7.0	90

#	Article	IF	CITATIONS
19	Treatment of adult nonmetastatic medulloblastoma patients according to the paediatric HIT 2000 protocol: A prospective observational multicentre study. European Journal of Cancer, 2013, 49, 893-903.	2.8	84
20	Hyperactive mTOR pathway promotes lymphoproliferation and abnormal differentiation in autoimmune lymphoproliferative syndrome. Blood, 2016, 128, 227-238.	1.4	77
21	Sonic hedgehog-associated medulloblastoma arising from the cochlear nuclei of the brainstem. Acta Neuropathologica, 2012, 123, 601-614.	7.7	71
22	Expression of FoxM1 Is Required for the Proliferation of Medulloblastoma Cells and Indicates Worse Survival of Patients. Clinical Cancer Research, 2011, 17, 6791-6801.	7.0	70
23	Targeting the Phosphoinositide 3-Kinase Isoform p110δImpairs Growth and Survival in Neuroblastoma Cells. Clinical Cancer Research, 2008, 14, 1172-1181.	7.0	63
24	An Individual Patient Data Meta-Analysis on Characteristics and Outcome of Patients with Papillary Glioneuronal Tumor, Rosette Glioneuronal Tumor with Neuropil-Like Islands and Rosette Forming Glioneuronal Tumor of the Fourth Ventricle. PLoS ONE, 2014, 9, e101211.	2.5	59
25	Nonmetastatic Medulloblastoma of Early Childhood: Results From the Prospective Clinical Trial HIT-2000 and An Extended Validation Cohort. Journal of Clinical Oncology, 2020, 38, 2028-2040.	1.6	58
26	Subgroup-specific localization of human medulloblastoma based on pre-operative MRI. Acta Neuropathologica, 2014, 127, 931-933.	7.7	53
27	Brainstem biopsy in pediatric diffuse intrinsic pontine glioma in the era of precision medicine: the INFORM study experience. European Journal of Cancer, 2019, 114, 27-35.	2.8	51
28	An Individual Patient Data Meta-Analysis on Characteristics, Treatments and Outcomes of Glioblastoma/ Gliosarcoma Patients with Metastases Outside of the Central Nervous System. PLoS ONE, 2015, 10, e0121592.	2.5	49
29	Disabling <i>c-Myc</i> in Childhood Medulloblastoma and Atypical Teratoid/Rhabdoid Tumor Cells by the Potent G-Quadruplex Interactive Agent S2T1-6OTD. Molecular Cancer Therapeutics, 2010, 9, 167-179.	4.1	46
30	Reirradiation in progressive high-grade gliomas: outcome, role of concurrent chemotherapy, prognostic factors and validation of a new prognostic score with an independent patient cohort. Radiation Oncology, 2013, 8, 161.	2.7	45
31	Intraventricular methotrexate as part of primary therapy for children with infant and/or metastatic medulloblastoma: Feasibility, acute toxicity and evidence for efficacy. European Journal of Cancer, 2015, 51, 2634-2642.	2.8	44
32	Development of the SIOPE DIPG network, registry and imaging repository: a collaborative effort to optimize research into a rare and lethal disease. Journal of Neuro-Oncology, 2017, 132, 255-266.	2.9	42
33	Acquired vorinostat resistance shows partial cross-resistance to †second-generation' HDAC inhibitors and correlates with loss of histone acetylation and apoptosis but not with altered HDAC and HAT activities. Anti-Cancer Drugs, 2009, 20, 321-333.	1.4	41
34	RNA interference-mediated c-MYC inhibition prevents cell growth and decreases sensitivity to radio- and chemotherapy in childhood medulloblastoma cells. BMC Cancer, 2009, 9, 10.	2.6	38
35	High-grade glioma in very young children: a rare and particular patient population. Oncotarget, 2017, 8, 64564-64578.	1.8	38
36	WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma. Acta Neuropathologica Communications, 2014, 2, 174.	5.2	37

#	Article	IF	CITATIONS
37	Diagnostics and treatment of diffuse intrinsic pontine glioma: where do we stand?. Journal of Neuro-Oncology, 2019, 145, 177-184.	2.9	36
38	Targeting Class IA PI3K Isoforms Selectively Impairs Cell Growth, Survival, and Migration in Glioblastoma. PLoS ONE, 2014, 9, e94132.	2.5	33
39	Genetic Analysis of Diffuse Highâ€Grade Astrocytomas in Infancy Defines a Novel Molecular Entity. Brain Pathology, 2015, 25, 409-417.	4.1	32
40	Anti-proliferative activity of the quassinoid NBT-272 in childhood medulloblastoma cells. BMC Cancer, 2007, 7, 19.	2.6	31
41	Metastatic medulloblastoma in adults: Outcome of patients treated according to the HIT2000 protocol. European Journal of Cancer, 2015, 51, 2434-2443.	2.8	30
42	CDKN2A deletion in supratentorial ependymoma with RELA alteration indicates a dismal prognosis: a retrospective analysis of the HIT ependymoma trial cohort. Acta Neuropathologica, 2020, 140, 405-407.	7.7	30
43	p53 expression predicts dismal outcome for medulloblastoma patients with metastatic disease. Journal of Neuro-Oncology, 2012, 106, 135-141.	2.9	28
44	Proper cerebellar development requires expression of β1â€integrin in Bergmann glia, but not in granule neurons. Glia, 2012, 60, 820-832.	4.9	26
45	Primary central nervous system primitive neuroectodermal tumors (CNS-PNETs) of the spinal cord in children: four cases from the German HIT database with a critical review of the literature. Journal of Neuro-Oncology, 2011, 104, 279-286.	2.9	24
46	An individual patient data meta-analysis on characteristics, treatments and outcomes of the glioblastoma/gliosarcoma patients with central nervous system metastases reported in literature until 2013. Journal of Neuro-Oncology, 2014, 120, 451-457.	2.9	24
47	The Phosphoinositide 3-Kinase p110α Isoform Regulates Leukemia Inhibitory Factor Receptor Expression via c-Myc and miR-125b to Promote Cell Proliferation in Medulloblastoma. PLoS ONE, 2015, 10, e0123958.	2.5	24
48	Outcome of 11 children with ependymoblastoma treated within the prospective HIT-trials between 1991 and 2006. Journal of Neuro-Oncology, 2011, 102, 459-469.	2.9	22
49	Recurrence in childhood medulloblastoma. Journal of Neuro-Oncology, 2011, 103, 705-711.	2.9	22
50	c-MYC expression sensitizes medulloblastoma cells to radio- and chemotherapy and has no impact on response in medulloblastoma patients. BMC Cancer, 2011, 11, 74.	2.6	22
51	Postponed Is Not Canceled: Role of Craniospinal Radiation Therapy in the Management of Recurrent Infant Medulloblastoma—An Experience From the HIT-REZ 1997 & 2005 Studies. International Journal of Radiation Oncology Biology Physics, 2014, 88, 1019-1024.	0.8	21
52	Improved risk-stratification for posterior fossa ependymoma of childhood considering clinical, histological and genetic features – a retrospective analysis of the HIT ependymoma trial cohort. Acta Neuropathologica Communications, 2019, 7, 181.	5.2	21
53	A Systematic Review on the Characteristics, Treatments and Outcomes of the Patients with Primary Spinal Glioblastomas or Gliosarcomas Reported in Literature until March 2015. PLoS ONE, 2016, 11, e0148312.	2.5	20
54	Curative treatment for central nervous system medulloepithelioma despite residual disease after resection. Strahlentherapie Und Onkologie, 2011, 187, 757-762.	2.0	18

#	Article	IF	CITATIONS
55	A very rare cancer in Down syndrome: medulloblastoma. Epidemiological data from 13 countries. Journal of Neuro-Oncology, 2013, 112, 107-114.	2.9	18
56	MB3W1 is an orthotopic xenograft model for anaplastic medulloblastoma displaying cancer stem cell- and Group 3-properties. BMC Cancer, 2016, 16, 115.	2.6	17
57	A long duration of the prediagnostic symptomatic interval is not associated with an unfavourable prognosis in childhood medulloblastoma. European Journal of Cancer, 2012, 48, 2028-2036.	2.8	16
58	Reirradiation as part of a salvage treatment approach for progressive non-pontine pediatric high-grade gliomas: preliminary experiences from the German HIT-HGG study group. Radiation Oncology, 2014, 9, 177.	2.7	16
59	MYCN amplification predicts poor outcome for patients with supratentorial primitive neuroectodermal tumors of the central nervous system. Neuro-Oncology, 2014, 16, 924-932.	1.2	16
60	Primitive neuroectodermal tumors of the brainstem in children treated according to the HIT trials: clinical findings of a rare disease. Journal of Neurosurgery: Pediatrics, 2015, 15, 227-235.	1.3	16
61	Integrating Tenascin-C protein expression and 1q25 copy number status in pediatric intracranial ependymoma prognostication: A new model for risk stratification. PLoS ONE, 2017, 12, e0178351.	2.5	15
62	Primary intracranial soft tissue sarcoma in children and adolescents: a cooperative analysis of the European CWS and HIT study groups. Journal of Neuro-Oncology, 2013, 111, 337-345.	2.9	14
63	Ependymomas in infancy: underlying genetic alterations, histological features, and clinical outcome. Child's Nervous System, 2020, 36, 2693-2700.	1.1	14
64	Treatment of children under 4 years of age with medulloblastoma and ependymoma in the HIT2000/HIT-REZ 2005 trials: Neuropsychological outcome 5 years after treatment. PLoS ONE, 2020, 15, e0227693.	2.5	14
65	The histone deacetylase inhibitors suberoylanilide hydroxamic (Vorinostat) and valproic acid induce irreversible and MDR1-independent resistance in human colon cancer cells. International Journal of Oncology, 0, , .	3.3	13
66	DNA copy number alterations in central primitive neuroectodermal tumors and tumors of the pineal region: an international individual patient data meta-analysis. Journal of Neuro-Oncology, 2012, 109, 415-423.	2.9	13
67	A suggestion to introduce the diagnosis of "diffuse midline glioma of the pons, H3 K27 wildtype (WHO) Tj E ⁻	Qq1 1 0.7	784314 rgBT 13
68	Evaluation of Prognostic Factors and Role of Participation in a Randomized Trial or a Prospective Registry in Pediatric and Adolescent Nonmetastatic Medulloblastoma – A Report From the HIT 2000 Trial. Advances in Radiation Oncology, 2020, 5, 1158-1169.	1.2	13
69	Expression of O6-methylguanine-DNA methyltransferase in childhood medulloblastoma. Journal of Neuro-Oncology, 2011, 103, 59-69.	2.9	12
70	Supra- and infratentorial pediatric ependymomas differ significantly in NeuN, p75 and GFAP expression. Journal of Neuro-Oncology, 2013, 112, 191-197.	2.9	12
71	External validation of a prognostic model estimating the survival of patients with recurrent high-grade gliomas after reirradiation. Practical Radiation Oncology, 2015, 5, e143-e150.	2.1	12
72	Concurrent radiotherapy with temozolomide vs. concurrent radiotherapy with aÂcisplatinum-based polychemotherapy regimen. Strahlentherapie Und Onkologie, 2018, 194, 215-224.	2.0	11

#	Article	IF	CITATIONS
73	Occurrence of highâ€grade glioma in Noonan syndrome: Report of two cases. Pediatric Blood and Cancer, 2019, 66, e27625.	1.5	11
74	Adults with CNS primitive neuroectodermal tumors/pineoblastomas: results of multimodal treatment according to the pediatric HIT 2000 protocol. Journal of Neuro-Oncology, 2014, 116, 567-575.	2.9	10
75	Re-irradiation or re-operation followed by dendritic cell vaccination? Comparison of two different salvage strategies for relapsed high-grade gliomas by means of a new prognostic model. Journal of Neuro-Oncology, 2015, 124, 325-332.	2.9	10
76	Concurrent IDH1 and SMARCB1 Mutations in Pediatric Medulloblastoma: A Case Report. Frontiers in Neurology, 2018, 9, 398.	2.4	10
77	Ketogenic diet treatment in diffuse intrinsic pontine glioma in children: Retrospective analysis of feasibility, safety, and survival data. Cancer Reports, 2021, 4, e1383.	1.4	10
78	Salbutamol exhibits androgenic activity in vitro. British Journal of Sports Medicine, 2007, 41, 874-878.	6.7	9
79	Reverse phase protein arrays enable glioblastoma molecular subtyping. Journal of Neuro-Oncology, 2017, 131, 437-448.	2.9	9
80	Treatment of embryonal tumors with multilayered rosettes with carboplatin/etoposide induction and high-dose chemotherapy within the prospective P-HIT trial. Neuro-Oncology, 2022, 24, 127-137.	1.2	9
81	CNS PNET molecular subgroups with distinct clinical features. Lancet Oncology, The, 2012, 13, 753-754.	10.7	7
82	Epidermal growth factor receptor overexpression is common and not correlated to gene copy number in ependymoma. Child's Nervous System, 2016, 32, 281-290.	1.1	7
83	Tropomyosin receptor kinase C (TrkC) expression in medulloblastoma: relation to the molecular subgroups and impact on treatment response. Child's Nervous System, 2017, 33, 1463-1471.	1.1	7
84	Haematological malignancies following temozolomide treatment for paediatric high-grade glioma. European Journal of Cancer, 2017, 81, 1-8.	2.8	4
85	Educational Attainment and Employment Outcome of Survivors of Pediatric CNS Tumors in Switzerland—A Report from the Swiss Childhood Cancer Survivor Study. Children, 2022, 9, 411.	1.5	4
86	Secondary Solid Malignancies After High-Grade Glioma Treatment in Pediatric Patients. Pediatric Hematology and Oncology, 2015, 32, 467-473.	0.8	3
87	Refining M1 stage in medulloblastoma: criteria for cerebrospinal fluid cytology and implications for improved risk stratification from the HIT-2000 trial. European Journal of Cancer, 2022, 164, 30-38.	2.8	3
88	Pediatric high-grade gliomas and the WHO CNS Tumor Classification—Perspectives of pediatric neuro-oncologists and neuropathologists in light of recent updates. Neuro-Oncology Advances, 2022, 4, .	0.7	3
89	Pediatric oncologists' perspectives on the use of complementary medicine in pediatric cancer patients in Switzerland: A national surveyâ€based crossâ€sectional study. Cancer Reports, 0, , .	1.4	3
90	Reply to J.C. Lindsey et al. Journal of Clinical Oncology, 2011, 29, e348-e349.	1.6	2

#	Article	IF	CITATIONS
91	Diffuse intrinsic pontine gliomas (DIPG) at recurrence: is there a window to test new therapies in some patients?. Journal of Neuro-Oncology, 2018, 139, 501-501.	2.9	2
92	Comment on: Ketogenic diet treatment in recurrent diffuse intrinsic pontine glioma in children: A safety and feasibility study. Pediatric Blood and Cancer, 2019, 66, e27664.	1.5	2
93	Transitioning to molecular diagnostics in pediatric high-grade glioma: experiences with the 2016 WHO classification of CNS tumors. Neuro-Oncology Advances, 2021, 3, vdab113.	0.7	2
94	Clinical and molecular characterization of isolated M1 disease in pediatric medulloblastoma: experience from the German HIT-MED studies. Journal of Neuro-Oncology, 2022, 157, 37-48.	2.9	2
95	EPEN-07. EPENDYMOMAS IN INFANCY: UNDERLYING GENETIC ALTERATIONS, HISTOLOGICAL FEATURES AND CLINICAL OUTCOME. Neuro-Oncology, 2019, 21, ii78-ii78.	1.2	1
96	Cohort-based association study of germline genetic variants with acute and chronic health complications of childhood cancer and its treatment: Genetic Risks for Childhood Cancer Complications Switzerland (GECCOS) study protocol. BMJ Open, 2022, 12, e052131.	1.9	1
97	HGG-16. Final analysis of the HIT-HGG-2007 trial (ISRCTN19852453): Significant survival benefit for pontine and non-pontine pediatric high-grade gliomas in comparison to previous HIT-GBM-C/-D trials Neuro-Oncology, 2022, 24, i63-i64.	1.2	1
98	MEDB-04. Young children with metastatic medulloblastoma: frequent requirement for radiotherapy in children with non-WNT/non-SHH medulloblastoma despite highly intensified chemotherapy – Results of the MET-HIT2000-BIS4 trial. Neuro-Oncology, 2022, 24, i104-i104.	1.2	1
99	Late complete remission of supratentorial primitive neuroectodermal tumor (CNSâ€₽NET) after multiple relapses. Pediatric Blood and Cancer, 2011, 56, 503-505.	1.5	0
100	Comment on: Adjuvant chemotherapy in adult medulloblastoma: is it an option for average-risk patients?. Journal of Neuro-Oncology, 2016, 129, 189-191.	2.9	0
101	MBCL-11. CONCURRENT IDH1 AND SMARCB1 MUTATIONS IN A PEDIATRIC MEDULLOBLASTOMA: A CASE REPORT. Neuro-Oncology, 2018, 20, i119-i119.	1.2	0
102	PDCT-03. CHEMOTHERAPY STRATEGIES FOR YOUNG CHILDREN NEWLY DIAGNOSED WITH MEDULLOBLASTOMA UP TO THE ERA OF MOLECULAR PROFILING – A COMPARATIVE OUTCOMES ANALYSIS. Neuro-Oncology, 2019, 21, vi183-vi184.	1.2	0
103	Cerebrospinal fluid evaluation in adult patients with medulloblastoma. Lancet Oncology, The, 2020, 21, e120.	10.7	0
104	Trigeminal nerve chronic motor denervation caused by cerebellar peduncle pilocytic astrocytoma. Child's Nervous System, 2021, 37, 1035-1037.	1.1	0
105	DIPG-25. KETOGENIC DIET IN DIFFUSE INTRINSIC PONTINE GLIOMA IN CHILDREN: A RETROSPECTIVE STUDY INVESTIGATING THE FEASIBILITY. Neuro-Oncology, 2020, 22, iii291-iii292.	1.2	0
106	HGG-17. HIGH-GRADE GLIOMA IN VERY YOUNG CHILDREN; A SINGLE-CENTER 11-YEAR-EXPERIENCE. Neuro-Oncology, 2020, 22, iii346-iii347.	1.2	0
107	MBCL-09. ISOLATED M1 METASTASES IN PEDIATRIC MEDULLOBLASTOMA: IS POSTOPERATIVE RADIOTHERAPY FOLLOWED BY MAINTENANCE CHEMOTHERAPY SUPERIOR TO POSTOPERATIVE SANDWICH-CHEMOTHERAPY AND RADIOTHERAPY?. Neuro-Oncology, 2020, 22, iii389-iii389.	1.2	0
108	HGG-34. DETECTION OF ONCOGENIC FUSION EVENTS IN SUPRATENTORIAL GLIOBLASTOMAS OF YOUNG CHILDREN. Neuro-Oncology, 2020, 22, iii349-iii350.	1.2	0

#	Article	IF	CITATIONS
109	HGG-59. Pediatric high-grade gliomas and the WHO classification on CNS Tumors - Different perspectives of pediatric neuro-oncologists and neuropathologists in the light of recent updates. Neuro-Oncology, 2022, 24, i75-i75.	1.2	0
110	MEDB-37. Chemotherapy response prediction by molecular risk factors in metastatic childhood medulloblastoma. Neuro-Oncology, 2022, 24, i113-i113.	1.2	0
111	DIPG-24. Neurological symptom improvement after re-irradiation in patients with diffuse intrinsic pontine glioma (DIPG): A retrospective analysis of the SIOP-E-HGG/DIPG project Neuro-Oncology, 2022, 24, i23-i23.	1.2	0
112	MEDB-41. Identifying a subgroup of patients with early childhood sonic hedgehog-activated medulloblastoma with unfavorable prognosis after treatment with radiation-sparing regimens including intraventricular methotrexate. Neuro-Oncology, 2022, 24, i114-i115.	1.2	0
113	HGG-21. Oncogenic tyrosine kinase gene fusions in infant-type hemispheric gliomas - comparison of RNA- and DNA-based methods for their reliable detection. Neuro-Oncology, 2022, 24, i65-i65.	1.2	0
114	HGG-29. How I treat recurrent pediatric high-grade glioma (HGG): A Europe-wide survey study Neuro-Oncology, 2022, 24, i67-i67.	1.2	0