
Karen Minassian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9190942/publications.pdf Version: 2024-02-01

KADEN MINASSIAN

#	Article	IF	CITATIONS
1	Targeted neurotechnology restores walking in humans with spinal cord injury. Nature, 2018, 563, 65-71.	27.8	708
2	Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nature Neuroscience, 2018, 21, 1728-1741.	14.8	247
3	Posterior root–muscle reflexes elicited by transcutaneous stimulation of the human lumbosacral cord. Muscle and Nerve, 2007, 35, 327-336.	2.2	204
4	Stimulation of the Human Lumbar Spinal Cord With Implanted and Surface Electrodes: A Computer Simulation Study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18, 637-645.	4.9	183
5	Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nature Medicine, 2022, 28, 260-271.	30.7	174
6	Common neural structures activated by epidural and transcutaneous lumbar spinal cord stimulation: Elicitation of posterior root-muscle reflexes. PLoS ONE, 2018, 13, e0192013.	2.5	150
7	Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury. Journal of Spinal Cord Medicine, 2014, 37, 202-211.	1.4	142
8	Human spinal locomotor control is based on flexibly organized burst generators. Brain, 2015, 138, 577-588.	7.6	139
9	Can the Human Lumbar Posterior Columns Be Stimulated by Transcutaneous Spinal Cord Stimulation? A Modeling Study. Artificial Organs, 2011, 35, 257-262.	1.9	134
10	The Human Central Pattern Generator for Locomotion: Does It Exist and Contribute to Walking?. Neuroscientist, 2017, 23, 649-663.	3.5	130
11	Augmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motorâ€incomplete Spinal Cordâ€injured Individuals. Artificial Organs, 2015, 39, E176-86.	1.9	112
12	Spinal Rhythm Generation by Step-Induced Feedback and Transcutaneous Posterior Root Stimulation in Complete Spinal Cord–Injured Individuals. Neurorehabilitation and Neural Repair, 2016, 30, 233-243.	2.9	98
13	Transcutaneous Spinal Cord Stimulation Induces Temporary Attenuation of Spasticity in Individuals with Spinal Cord Injury. Journal of Neurotrauma, 2020, 37, 481-493.	3.4	87
14	Neuromodulation of lower limb motor control in restorative neurology. Clinical Neurology and Neurosurgery, 2012, 114, 489-497.	1.4	74
15	Targeting Lumbar Spinal Neural Circuitry by Epidural Stimulation to Restore Motor Function After Spinal Cord Injury. Neurotherapeutics, 2016, 13, 284-294.	4.4	66
16	Periodic modulation of repetitively elicited monosynaptic reflexes of the human lumbosacral spinal cord. Journal of Neurophysiology, 2015, 114, 400-410.	1.8	65
17	Modification of Reflex Responses to Lumbar Posterior Root Stimulation by Motor Tasks in Healthy Subjects. Artificial Organs, 2008, 32, 644-648.	1.9	64
18	Body Position Influences Which Neural Structures Are Recruited by Lumbar Transcutaneous Spinal Cord Stimulation. PLoS ONE, 2016, 11, e0147479.	2.5	64

Karen Minassian

#	Article	IF	CITATIONS
19	Spinal Cord Stimulation and Augmentative Control Strategies for Leg Movement after Spinal Paralysis in Humans. CNS Neuroscience and Therapeutics, 2016, 22, 262-270.	3.9	53
20	Spinal cord stimulation. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 109, 283-296.	1.8	50
21	Recovery cycles of posterior root-muscle reflexes evoked by transcutaneous spinal cord stimulation and of the H reflex in individuals with intact and injured spinal cord. PLoS ONE, 2019, 14, e0227057.	2.5	48
22	Frequency-dependent selection of alternative spinal pathways with common periodic sensory input. Biological Cybernetics, 2004, 91, 359-376.	1.3	33
23	Probing the Human Spinal Locomotor Circuits by Phasic Step-Induced Feedback and by Tonic Electrical and Pharmacological Neuromodulation. Current Pharmaceutical Design, 2017, 23, 1805-1820.	1.9	31
24	Multiâ€Electrode Array for Transcutaneous Lumbar Posterior Root Stimulation. Artificial Organs, 2015, 39, 834-840.	1.9	25
25	Spinal motor mapping by epidural stimulation of lumbosacral posterior roots in humans. IScience, 2021, 24, 101930.	4.1	23
26	Transcutaneous Lumbar Posterior Root Stimulation for Motor Control Studies and Modification of Motor Activity after Spinal Cord Injury. , 2011, , 226-255.		21
27	Influence of Spine Curvature on the Efficacy of Transcutaneous Lumbar Spinal Cord Stimulation. Journal of Clinical Medicine, 2021, 10, 5543.	2.4	7
28	Ipsi- and Contralateral Oligo- and Polysynaptic Reflexes in Humans Revealed by Low-Frequency Epidural Electrical Stimulation of the Lumbar Spinal Cord. Brain Sciences, 2021, 11, 112.	2.3	5
29	Transcutaneous Spinal Cord Stimulation: Advances in an Emerging Non-Invasive Strategy for Neuromodulation. Journal of Clinical Medicine, 2022, 11, 3836.	2.4	5
30	Finite Element Models of Transcutaneous Spinal Cord Stimulation. , 2014, , 1-6.		4
31	Finite Element Modeling for Extracellular Stimulation. , 2014, , 1-12.		3
32	Locomotor rhythm and pattern generating networks of the human lumbar spinal cord: an electrophysiological and computer modeling study. BMC Neuroscience, 2013, 14, .	1.9	2
33	Spinal Cord Stimulation as a Neuromodulatory Intervention for Altered Motor Control Following Spinal Cord Injury. Biosystems and Biorobotics, 2018, , 501-521.	0.3	2
34	The posterior root-muscle reflex. , 2020, , 239-253.		2
35	Finite Element Modeling for Extracellular Stimulation. , 2013, , 1-12.		2
36	Epidural and Transcutaneous Spinal Cord Stimulation Strategies for Motor Recovery After Spinal		1

Cord Injury. , 2021, , 167-190.

1

#	Article	IF	CITATIONS
37	Paraspinal Magnetic and Transcutaneous Electrical Stimulation. , 2014, , 1-21.		1
38	Paraspinal Magnetic and Transcutaneous Electrical Stimulation. , 2014, , 1-21.		1
39	Non-invasive transcutaneous stimulation of the human lumbar spinal cord facilitates locomotor output in spinal cord injury. Biomedizinische Technik, 2012, 57, .	0.8	0
40	Paraspinal Magnetic and Transcutaneous Electrical Stimulation. , 2013, , 1-20.		0
41	Finite Element Models of Transcutaneous Spinal Cord Stimulation. , 2022, , 1434-1439.		0
42	Finite Element Modeling for Extracellular Stimulation. , 2022, , 1423-1432.		0
43	Paraspinal Magnetic and Transcutaneous Electrical Stimulation. , 2022, , 2581-2599.		Ο