Allan Lawrie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9188724/publications.pdf

Version: 2024-02-01

74163 66343 6,525 151 42 75 citations h-index g-index papers 164 164 164 8610 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	ASPIRE registry: Assessing the Spectrum of Pulmonary hypertension Identified at a REferral centre. European Respiratory Journal, 2012, 39, 945-955.	6.7	356
2	Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease. American Journal of Human Genetics, 2017, 100, 75-90.	6.2	343
3	Microbubble-enhanced ultrasound for vascular gene delivery. Gene Therapy, 2000, 7, 2023-2027.	4.5	340
4	Identification of rare sequence variation underlying heritable pulmonary arterial hypertension. Nature Communications, 2018, 9, 1416.	12.8	279
5	Ultrasound Enhances Reporter Gene Expression After Transfection of Vascular Cells In Vitro. Circulation, 1999, 99, 2617-2620.	1.6	187
6	Germline selection shapes human mitochondrial DNA diversity. Science, 2019, 364, .	12.6	178
7	Pulmonary hypertension in COPD: results from the ASPIRE registry. European Respiratory Journal, 2013, 41, 1292-1301.	6.7	173
8	Targeting Vascular Remodeling to Treat Pulmonary Arterial Hypertension. Trends in Molecular Medicine, 2017, 23, 31-45.	6.7	171
9	Plasma Metabolomics Implicates Modified Transfer RNAs and Altered Bioenergetics in the Outcomes of Pulmonary Arterial Hypertension. Circulation, 2017, 135, 460-475.	1.6	154
10	Reduced MicroRNA-150 Is Associated with Poor Survival in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 294-302.	5.6	153
11	Ultrasound Gene Therapy: On the Road from Concept to Reality. Echocardiography, 2001, 18, 339-347.	0.9	151
12	Interdependent Serotonin Transporter and Receptor Pathways Regulate S100A4/Mts1, a Gene Associated With Pulmonary Vascular Disease. Circulation Research, 2005, 97, 227-235.	4.5	147
13	Discovery of Distinct Immune Phenotypes Using Machine Learning in Pulmonary Arterial Hypertension. Circulation Research, 2019, 124, 904-919.	4.5	141
14	TNF-related apoptosis-inducing ligand (TRAIL) regulates inflammatory neutrophil apoptosis and enhances resolution of inflammation. Journal of Leukocyte Biology, 2011, 90, 855-865.	3.3	126
15	Magnetic Resonance Imaging in the Prognostic Evaluation of Patients with Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 228-239.	5. 6	122
16	Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association studies and meta-analysis. Lancet Respiratory Medicine, the, 2019, 7, 227-238.	10.7	122
17	MicroRNA-140-5p and SMURF1 regulate pulmonary arterial hypertension. Journal of Clinical Investigation, 2016, 126, 2495-2508.	8.2	119
18	Epigenetic Dysregulation of the Dynamin-Related Protein 1 Binding Partners MiD49 and MiD51 Increases Mitotic Mitochondrial Fission and Promotes Pulmonary Arterial Hypertension. Circulation, 2018, 138, 287-304.	1.6	115

#	Article	IF	CITATIONS
19	Phenotypic Characterization of <i>EIF2AK4</i> Mutation Carriers in a Large Cohort of Patients Diagnosed Clinically With Pulmonary Arterial Hypertension. Circulation, 2017, 136, 2022-2033.	1.6	111
20	Low-Dose FK506 (Tacrolimus) in End-Stage Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 254-257.	5.6	104
21	Plasma proteome analysis in patients with pulmonary arterial hypertension: an observational cohort study. Lancet Respiratory Medicine, the, 2017, 5, 717-726.	10.7	99
22	Identification of Cardiac Magnetic Resonance Imaging Thresholds for Risk Stratification in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 458-468.	5.6	99
23	Identification of Long Noncoding RNA H19 as a New Biomarker and Therapeutic Target in Right Ventricular Failure in Pulmonary Arterial Hypertension. Circulation, 2020, 142, 1464-1484.	1.6	96
24	The impact of patient choice on survival in chronic thromboembolic pulmonary hypertension. European Respiratory Journal, 2018, 52, 1800589.	6.7	87
25	Inhibition of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) reverses experimental pulmonary hypertension. Journal of Experimental Medicine, 2012, 209, 1919-1935.	8.5	83
26	A toolbox for the longitudinal assessment of healthspan in aging mice. Nature Protocols, 2020, 15, 540-574.	12.0	81
27	Evidence of a Role for Osteoprotegerin in the Pathogenesis of Pulmonary Arterial Hypertension. American Journal of Pathology, 2008, 172, 256-264.	3.8	80
28	S100A4 and Bone Morphogenetic Protein-2 Codependently Induce Vascular Smooth Muscle Cell Migration via Phospho–Extracellular Signal-Regulated Kinase and Chloride Intracellular Channel 4. Circulation Research, 2009, 105, 639-647.	4.5	80
29	Characterization of <i>GDF2</i> Mutations and Levels of BMP9 and BMP10 in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 575-585.	5.6	80
30	Zebrafish as a tractable model of human cardiovascular disease. British Journal of Pharmacology, 2022, 179, 900-917.	5.4	70
31	Osteoprotegerin in Cardiometabolic Disorders. International Journal of Endocrinology, 2015, 2015, 1-15.	1.5	67
32	Pulmonary Artery Denervation Reduces Pulmonary Artery Pressure and Induces Histological Changes in an Acute Porcine Model of Pulmonary Hypertension. Circulation: Cardiovascular Interventions, 2015, 8, e002569.	3.9	66
33	Pulmonary Artery Denervation Attenuates Pulmonary Arterial Remodeling in Dogs With Pulmonary Arterial Hypertension Induced by Dehydrogenized Monocrotaline. JACC: Cardiovascular Interventions, 2015, 8, 2013-2023.	2.9	62
34	Loss-of-Function <i>ABCC8</i> Mutations in Pulmonary Arterial Hypertension. Circulation Genomic and Precision Medicine, 2018, 11, e002087.	3.6	62
35	Hypoxia determines survival outcomes of bacterial infection through HIF-1α–dependent reprogramming of leukocyte metabolism. Science Immunology, 2017, 2, .	11.9	61
36	Paigen Diet–Fed Apolipoprotein E Knockout Mice Develop Severe Pulmonary Hypertension in an Interleukin-1–Dependent Manner. American Journal of Pathology, 2011, 179, 1693-1705.	3.8	58

#	Article	IF	Citations
37	Ultrasound-enhanced transgene expression in vascular cells is not dependent upon cavitation-induced free radicals. Ultrasound in Medicine and Biology, 2003, 29, 1453-1461.	1.5	57
38	Ultrasound-mediated delivery of TIMP-3 plasmid DNA into saphenous vein leads to increased lumen size in a porcine interposition graft model. Gene Therapy, 2005, 12, 1154-1157.	4.5	56
39	Toll-like Receptor 3 Is a Therapeutic Target for Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 199-210.	5.6	55
40	Apolipoprotein D Inhibits Platelet-Derived Growth Factor-BB–Induced Vascular Smooth Muscle Cell Proliferated by Preventing Translocation of Phosphorylated Extracellular Signal Regulated Kinase 1/2 to the Nucleus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 2172-2177.	2.4	53
41	Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data. Scientific Reports, 2018, 8, 1300.	3.3	48
42	Eplerenone attenuates pathological pulmonary vascular rather than right ventricular remodeling in pulmonary arterial hypertension. BMC Pulmonary Medicine, 2018, 18, 41.	2.0	46
43	Comprehensive Cancer-Predisposition Gene Testing in an Adult Multiple Primary Tumor Series Shows a Broad Range of Deleterious Variants and Atypical Tumor Phenotypes. American Journal of Human Genetics, 2018, 103, 3-18.	6.2	46
44	Blood flow suppresses vascular Notch signalling via dll4 and is required for angiogenesis in response to hypoxic signalling. Cardiovascular Research, 2013, 100, 252-261.	3.8	45
45	Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia. American Journal of Human Genetics, 2019, 104, 948-956.	6.2	45
46	Whole-Blood RNA Profiles Associated with Pulmonary Arterial Hypertension and Clinical Outcome. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 586-594.	5.6	45
47	Screening strategies for pulmonary arterial hypertension. European Heart Journal Supplements, 2019, 21, K9-K20.	0.1	44
48	Rare variant analysis of 4241 pulmonary arterial hypertension cases from an international consortium implicates FBLN2, PDGFD, and rare de novo variants in PAH. Genome Medicine, 2021, 13, 80.	8.2	43
49	Loss of Endothelial Endoglin Promotes High-Output Heart Failure Through Peripheral Arteriovenous Shunting Driven by VEGF Signaling. Circulation Research, 2020, 126, 243-257.	4.5	41
50	The role of chemokines and chemokine receptors in pulmonary arterial hypertension. British Journal of Pharmacology, 2021, 178, 72-89.	5.4	40
51	A machine learning cardiac magnetic resonance approach to extract disease features and automate pulmonary arterial hypertension diagnosis. European Heart Journal Cardiovascular Imaging, 2021, 22, 236-245.	1.2	40
52	Identifying early pulmonary arterial hypertension biomarkers in systemic sclerosis: machine learning on proteomics from the DETECT cohort. European Respiratory Journal, 2021, 57, 2002591.	6.7	40
53	De Novo Truncating Mutations in WASF1 Cause Intellectual Disability with Seizures. American Journal of Human Genetics, 2018, 103, 144-153.	6.2	36
54	Bosutinib therapy resulting in severe deterioration of pre-existing pulmonary arterial hypertension. European Respiratory Journal, 2016, 48, 1514-1516.	6.7	35

#	Article	IF	CITATIONS
55	Specific Alleles of <i>CLN7</i> / <i>MFSD8</i> , a Protein That Localizes to Photoreceptor Synaptic Terminals, Cause a Spectrum of Nonsyndromic Retinal Dystrophy., 2017, 58, 2906.		35
56	Utilising artificial intelligence to determine patients at risk of a rare disease: idiopathic pulmonary arterial hypertension. Pulmonary Circulation, 2019, 9, 1-9.	1.7	35
57	Using the Plasma Proteome for Risk Stratifying Patients with Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1102-1111.	5.6	35
58	The Latest in Animal Models of Pulmonary Hypertension and Right Ventricular Failure. Circulation Research, 2022, 130, 1466-1486.	4.5	35
59	Altered Macrophage Polarization Induces Experimental Pulmonary Hypertension and Is Observed in Patients With Pulmonary Arterial Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 430-445.	2.4	33
60	Apolipoprotein D and Platelet-Derived Growth Factor-BB Synergism Mediates Vascular Smooth Muscle Cell Migration. Circulation Research, 2004, 95, 179-186.	4.5	32
61	Deficiency of tumour necrosis factor-related apoptosis-inducing ligand exacerbates lung injury and fibrosis. Thorax, 2012, 67, 796-803.	5.6	31
62	Traffic exposures, air pollution and outcomes in pulmonary arterial hypertension: a UK cohort study analysis. European Respiratory Journal, 2019, 53, 1801429.	6.7	31
63	A diagnostic miRNA signature for pulmonary arterial hypertension using a consensus machine learning approach. EBioMedicine, 2021, 69, 103444.	6.1	30
64	Bayesian Inference Associates Rare <i>KDR</i> Variants With Specific Phenotypes in Pulmonary Arterial Hypertension. Circulation Genomic and Precision Medicine, 2021, 14, .	3.6	29
65	Elevated Plasma CXCL12α Is Associated with a Poorer Prognosis in Pulmonary Arterial Hypertension. PLoS ONE, 2015, 10, e0123709.	2.5	27
66	Biallelic Mutation of ARHGEF18, Involved in the Determination of Epithelial Apicobasal Polarity, Causes Adult-Onset Retinal Degeneration. American Journal of Human Genetics, 2017, 100, 334-342.	6.2	26
67	Differential IL-1 signaling induced by BMPR2 deficiency drives pulmonary vascular remodeling. Pulmonary Circulation, 2017, 7, 768-776.	1.7	26
68	The Hepcidin/Ferroportin axis modulates proliferation of pulmonary artery smooth muscle cells. Scientific Reports, 2018, 8, 12972.	3.3	25
69	Serum Osteoprotegerin is Increased and Predicts Survival in Idiopathic Pulmonary Arterial Hypertension. Pulmonary Circulation, 2012, 2, 21-27.	1.7	24
70	Divergent Roles for TRAIL in Lung Diseases. Frontiers in Medicine, 2018, 5, 212.	2.6	23
71	A therapeutic antibody targeting osteoprotegerin attenuates severe experimental pulmonary arterial hypertension. Nature Communications, 2019, 10, 5183.	12.8	22
72	High levels of healthcare utilization prior to diagnosis in idiopathic pulmonary arterial hypertension support the feasibility of an early diagnosis algorithm: the SPHInX project. Pulmonary Circulation, 2018, 8, 1-9.	1.7	21

#	Article	IF	Citations
73	Biological heterogeneity in idiopathic pulmonary arterial hypertension identified through unsupervised transcriptomic profiling of whole blood. Nature Communications, 2021, 12, 7104.	12.8	21
74	Heart rate reduction with ivabradine promotes shear stress-dependent anti-inflammatory mechanisms in arteries. Thrombosis and Haemostasis, 2016, 116, 181-190.	3.4	20
75	Circulating Protein Biomarkers in Systemic Sclerosis Related Pulmonary Arterial Hypertension: A Review of Published Data. Frontiers in Medicine, 2018, 5, 175.	2.6	19
76	Mining the Plasma Proteome for Insights into the Molecular Pathology of Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1449-1460.	5.6	19
77	Maintained right ventricular pressure overload induces ventricular–arterial decoupling in mice. Experimental Physiology, 2017, 102, 180-189.	2.0	18
78	Incremental shuttle walk test distance and autonomic dysfunction predict survival in pulmonary arterial hypertension. Journal of Heart and Lung Transplantation, 2017, 36, 871-879.	0.6	16
79	Right ventricular remodelling in pulmonary arterial hypertension predicts treatment response. Heart, 2022, 108, 1392-1400.	2.9	15
80	Maximal Exercise Testing Using the Incremental Shuttle Walking Test Can Be Used to Risk-Stratify Patients with Pulmonary Arterial Hypertension. Annals of the American Thoracic Society, 2021, 18, 34-43.	3.2	13
81	Repeatability and sensitivity to change of non-invasive end points in PAH: the RESPIRE study. Thorax, 2021, 76, 1032-1035.	5.6	13
82	Mts1/S100A4 Stimulates Human Pulmonary Artery Smooth Muscle Cell Migration Through Multiple Signaling Pathways. Chest, 2005, 128, 577S.	0.8	12
83	Hypoxia Down-Regulates Cyclic Guanidine Monophosphate-Dependent Protein Kinase in Fetal Pulmonary Vascular Smooth Muscle Cell Through Generation of Reactive Oxygen Species and Promotes Development of Pulmonary Hypertension. Chest, 2005, 128, 577S-578S.	0.8	12
84	A Report on the Use of Animal Models and Phenotyping Methods in Pulmonary Hypertension Research. Pulmonary Circulation, 2014, 4, 2-9.	1.7	12
85	Influence of pre-analytical and analytical factors on osteoprotegerin measurements. Clinical Biochemistry, 2014, 47, 1279-1285.	1.9	12
86	MicroRNA in Pulmonary Vascular Disease. Progress in Molecular Biology and Translational Science, 2014, 124, 43-63.	1.7	11
87	Right Ventricular Adaptation Assessed Using Cardiac Magnetic Resonance Predicts Survival in Pulmonary Arterial Hypertension. JACC: Cardiovascular Imaging, 2021, 14, 1271-1272.	5.3	11
88	Enhanced neutrophil extracellular trap formation in COVID-19 is inhibited by the protein kinase C inhibitor ruboxistaurin. ERJ Open Research, 2022, 8, 00596-2021.	2.6	11
89	Severe pulmonary hypertension associated with lung disease is characterised by a loss of small pulmonary vessels on quantitative computed tomography. ERJ Open Research, 2022, 8, 00503-2021.	2.6	10
90	No Evidence for Cardiac Dysfunction in Kif6 Mutant Mice. PLoS ONE, 2013, 8, e54636.	2.5	9

#	Article	IF	CITATIONS
91	Autoimmunity Is a Significant Feature of Idiopathic Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 81-93.	5.6	9
92	Selective improvement of pulmonary arterial hypertension with a dual ET _A /ET _B receptors antagonist in the apolipoprotein E ^{\hat{a}^{3}/\hat{a}^{3}} model of PAH and atherosclerosis. Pulmonary Circulation, 2018, 8, 1-11.	1.7	8
93	Training and clinical testing of artificial intelligence derived right atrial cardiovascular magnetic resonance measurements. Journal of Cardiovascular Magnetic Resonance, 2022, 24, 25.	3.3	8
94	TRAIL Deficient Mice Are Protected from Sugen/Hypoxia Induced Pulmonary Arterial Hypertension. Diseases (Basel, Switzerland), 2014, 2, 260-273.	2.5	7
95	From bones to blood pressure, developing novel biologic approaches targeting the osteoprotegein pathway for pulmonary vascular disease., 2017, 169, 78-82.		7
96	The incremental shuttle walk test predicts mortality in nonâ€group 1 pulmonary hypertension: results from the ASPIRE Registry. Pulmonary Circulation, 2019, 9, 1-9.	1.7	7
97	Imaging and Risk Stratification in Pulmonary Arterial Hypertension: Time to Include Right Ventricular Assessment. Frontiers in Cardiovascular Medicine, 2022, 9, 797561.	2.4	7
98	The role of the osteoprotegerin/tumor necrosis factor related apoptosis-inducing ligand axis in the pathogenesis of pulmonary arterial hypertension. Vascular Pharmacology, 2014, 63, 114-117.	2.1	6
99	Frataxin and endothelial cell senescence in pulmonary hypertension. Journal of Clinical Investigation, 2021, 131, .	8.2	6
100	miRNA-140-5p: new avenue for pulmonary arterial hypertension drug development?. Epigenomics, 2016, 8, 1311-1313.	2.1	4
101	Incremental Shuttle Walking Test Distance Is Reduced in Patients With Pulmonary Hypertension in World Health Organisation Functional Class I. Frontiers in Medicine, 2018, 5, 172.	2.6	4
102	VP22-mediated intercellular transport correlates with enhanced biological activity of MybEngrailed but not (HSV-I) thymidine kinase fusion proteins in primary vascular cells following non-viral transfection. Journal of Gene Medicine, 2005, 7, 375-385.	2.8	3
103	T5â€MicroRNA-140–5p Regulates Disease Phenotype in Experimental Pulmonary Arterial Hypertension via SMURF1. Thorax, 2015, 70, A3.1-A3.	5.6	3
104	Expression Quantitative Trait Locus Mapping in Pulmonary Arterial Hypertension. Genes, 2020, 11, 1247.	2.4	3
105	T6 TRAIL is a potential novel therapeutic target in pulmonary arterial hypertension. Thorax, 2011, 66, A3-A3.	5.6	2
106	Repeatability and Sensitivity to change of right ventricular analysis methods using cardiac magnetic resonance imaging in PAH: results from the RESPIRE Study. , 2019, , .		2
107	S111 The role of TNF-related apoptosis inducing ligand (TRAIL) in pulmonary fibrosis. Thorax, 2011, 66, A51-A52.	5.6	1
108	T5 Opg Regulates Pulmonary Arterial Smooth Muscle Cell Proliferation And The Expression Of Pah-associated Genes Via Fas. Thorax, 2014, 69, A2-A3.	5.6	1

#	Article	IF	Citations
109	Eâ€microRNA-140-5p and SMURF1 Regulate Pulmonary Arterial Hypertension. Heart, 2016, 102, A147-A147.	2.9	1
110	P245â€Whole blood levels of microrna-34a predict survival and regulate genes associated with pulmonary arterial hypertension. Thorax, 2016, 71, A220.2-A221.	5.6	1
111	Prognostic Significance of Reduced Blood Pressure Response to Exercise in Pediatric Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1478-1481.	5.6	1
112	P183â€Impact of patient choice on survival in patients with chronic thromboembolic pulmonary hypertension offered pulmonary endarterectomy. , 2017, , .		1
113	T6â€Vascular smooth muscle derived TRAIL underlies pulmonary vascular remodelling in sugen 5416/hypoxia mice. , 2018, , .		1
114	The Incremental Shuttle Walking Test Can Be Used to Risk Stratify Patients with Pulmonary Hypertension as Per the European Respiratory/Cardiac Society Guidelines. , 2019, , .		1
115	Editorial: Pulmonary Hypertension: Mechanisms and Management, History and Future. Frontiers in Medicine, 2020, 7, 125.	2.6	1
116	Deprivation and prognosis in patients with pulmonary arterial hypertension: missing the effect of deprivation on a rare disease?. European Respiratory Journal, 2020, 56, 1902334.	6.7	1
117	A prospective study comparing the repeatability and sensitivity to change of non-invasive endpoints in pulmonary arterial hypertension: the RESPIRE study. , 2019, , .		1
118	Sex bias exists in diagnosing pulmonary arterial hypertension via machine learning. , 2020, , .		1
119	S151 TRAIL deficiency is protective in experimental pulmonary arterial hypertension. Thorax, 2010, 65, A68-A68.	5.6	0
120	P34 Characterising T cell sub-populations in pulmonary hypertension. Thorax, 2010, 65, A91-A91.	5.6	0
121	25 Paigen diet-fed Apolipoprotein E knock-out mice develop severe pulmonary hypertension in an interleukin-1 dependent manner. Heart, 2011, 97, e7-e7.	2.9	0
122	14 The role of TILRR in vascular cell inflammation and development of atherosclerosis. Heart, 2011, 97, e7-e7.	2.9	0
123	P5 Pulmonary hypertension in a mouse model with reduced macrophage number (MacLow). Thorax, 2011, 66, A68-A69.	5.6	0
124	S69 Serum osteoprotegerin predicts mortality in a prospective study on incident cases of pulmonary arterial hypertension. Thorax, 2011, 66, A34-A34.	5.6	0
125	03â€Tissue Trail Drives Pulmonary Vascular Remodeling and its Inhibition Reverses Experimental Pulmonary Arterial Hypertension. Heart, 2012, 98, A1.3-A1.	2.9	0
126	Tumour necrosis factor-related apoptosis-inducing ligand is a novel therapeutic target in pulmonary arterial hypertension. Lancet, The, 2013, 381, S47.	13.7	0

#	Article	IF	CITATIONS
127	P157â€Hepatocyte growth factor concentration correlates with haemodynamic severity in connective tissue disease-associated pulmonary arterial hypertension. Thorax, 2013, 68, A146.2-A147.	5.6	O
128	183â€Novel OPG Protein Interactions Regulate Survival, Proliferation And Pah-associated Gene Expression in Pulmonary Arterial Smooth Muscle Cells. Heart, 2014, 100, A102.3-A103.	2.9	0
129	S3â€Reduced BMPR2 expression potentiates a pulmonary artery smooth muscle cell specific IL-1ß response. Thorax, 2015, 70, A5.3-A6.	5.6	0
130	S85â€Reduction of CD68 macrophages causes gender specific spontaneous pulmonary arterial hypertension in mice. Thorax, 2016, 71, A49.1-A49.	5.6	0
131	S87â€Deficiency of toll-like receptor 3 (TLR3) exacerbates pulmonary hypertension in mice. Thorax, 2016, 71, A50.1-A50.	5.6	0
132	S104â€Hypoxia preconditions the innate immune response to acute bacterial pulmonary infections. Thorax, 2016, 71, A61.2-A62.	5.6	0
133	\$107â€Genotype-phenotype associations in pulmonary arterial hypertension caused by BMPR2 and EIF2AK4 variants. Thorax, 2016, 71, A63-A64.	5.6	0
134	156 Inducers of pulmonary arterial hypertension upregulate the expression of plasma membrane calcium atpase 1 in pulmonary artery smooth muscle cells. Heart, 2017, 103, A113.1-A113.	2.9	0
135	S111â€Altered neutrophil phenotypes in pulmonary arterial hypertension. , 2017, , .		0
136	P11â \in Plasma membrane calcium atpase 1 gene expression increases in vascular smooth muscle cells treated with inducers of pulmonary arterial hypertension., 2018,,.		0
137	126â€Endothelial endoglin is required to protect against high output heart failure. , 2018, , .		0
138	S43â€Circulatory levels of microrna-34a expression identify patients with poor clinical outcome, and regulate pulmonary vascular cell phenotype. , 2018, , .		0
139	S40â \in Phenotypic characterisation of GDF2 mutation carriers in a large cohort of patients with pulmonary arterial hypertension. , 2018, , .		0
140	BS44â€Cytokine induced downregulation of plasma membrane calcium atpase 4 gene increases sensitivity to apoptosis in pulmonary artery endothelial cells. , 2019, , .		0
141	Validating the Zebrafish Aortic Arch Development as a Model to Study the Molecular Mechanisms Underlying Idiopathic Pulmonary Arterial Hypertension. , 2019, , .		0
142	Identification of Circulating Long Non-Coding RNA H 19 as a Novel Biomarker for Right Ventricular Failure Associated with Pulmonary Arterial Hypertension. , 2020, , .		0
143	High Frequency Ultrasound Enhances Transfection of Porcine Vascular Smooth Muscle Cells in Vitro. Journal of the American College of Cardiology, 1998, 31, 25A.	2.8	0
144	Chronic thrombo-embolic pulmonary hypertension: Long-term outcomes in operated and non-operated patients. , $2016, , .$		0

#	Article	IF	CITATIONS
145	Incremental Shuttle Walk Test predicts survival in non-Group 1 Pulmonary Hypertension without a ceiling effect., 2018,,.		O
146	Real world data from hospital episode statistics can be used to determine patients at risk of idiopathic pulmonary arterial hypertension. , 2018 , , .		0
147	Incremental shuttle walking test distance is reduced in patients with pulmonary hypertension in WHO Functional Class I., 2018, , .		O
148	Thoracic CT features of patients with BMPR2 mutation: preliminary analysis from the UK National Cohort Study of Idiopathic and Heritable PAH. , 2019 , , .		0
149	Multi-omic profiling in pulmonary arterial hypertension. , 2020, , .		O
150	Percent-predicted incremental shuttle walking test distance stratifies risk in pulmonary arterial hypertension. , 2020, , .		0
151	Cardiac MRI right atrial area measurement thresholds for risk stratification in patients with PAH. , 2020, , .		0