Shaw H Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9188277/publications.pdf

Version: 2024-02-01

145 papers 4,767 citations

36 h-index 106344 65 g-index

146 all docs

146 docs citations

times ranked

146

3508 citing authors

#	Article	IF	CITATIONS
1	Circularly polarized light generated by photoexcitation of luminophores in glassy liquid-crystal films. Nature, 1999, 397, 506-508.	27.8	315
2	Synthesis, Characterization, and Optical Properties of Monodisperse Chiral Oligofluorenes. Journal of the American Chemical Society, 2002, 124, 8337-8347.	13.7	246
3	Thermodynamics of solution of nonpolar gases in a fused salt. Hydrophobic bonding behavior in a nonaqueous system. Journal of the American Chemical Society, 1981, 103, 481-482.	13.7	192
4	Spiro-Linked Ter-, Penta-, and Heptafluorenes as Novel Amorphous Materials for Blue Light Emission. Chemistry of Materials, 2002, 14, 1332-1339.	6.7	191
5	Origin of Strong Chiroptical Activities in Films of Nonafluorenes with a Varying Extent of Pendant Chirality. Journal of the American Chemical Society, 2003, 125, 14032-14038.	13.7	188
6	Strongly Polarized and Efficient Blue Organic Light-Emitting Diodes Using Monodisperse Glassy Nematic Oligo(fluorene)s. Advanced Materials, 2003, 15, 1176-1180.	21.0	166
7	Tracer diffusion in polyatomic liquids. III. Journal of Chemical Physics, 1982, 77, 2540-2544.	3.0	157
8	Diffusion of crown ethers in alcohols. The Journal of Physical Chemistry, 1984, 88, 5118-5121.	2.9	154
9	Monodisperse Oligofluorenes Forming Glassy-Nematic Films for Polarized Blue Emission. Chemistry of Materials, 2003, 15, 542-549.	6.7	154
10	Effect of Hole Mobility Through Emissive Layer on Temporal Stability of Blue Organic Light-Emitting Diodes. Advanced Functional Materials, 2006, 16, 1481-1487.	14.9	122
11	Carrier Transport Properties of Monodisperse Glassy-Nematic Oligofluorenes in Organic Field-Effect Transistors. Chemistry of Materials, 2005, 17, 264-268.	6.7	111
12	Monodisperse Glassy-Nematic Conjugated Oligomers with Chemically Tunable Polarized Light Emission. Chemistry of Materials, 2003, 15, 4352-4360.	6.7	100
13	Tracer diffusion in polyatomic liquids. II. Journal of Chemical Physics, 1981, 75, 1422-1426.	3.0	84
14	Effects of active layer thickness and thermal annealing on polythiophene: Fullerene bulk heterojunction photovoltaic devices. Applied Physics Letters, 2010, 97, .	3.3	80
15	Fully Spiro-Configured Terfluorenes as Novel Amorphous Materials Emitting Blue Light. Chemistry of Materials, 2002, 14, 463-470.	6.7	75
16	Novel Glassy Nematic Liquid Crystals for Non-destructive Rewritable Optical Memory and Photonic Switching. Advanced Materials, 2003, 15, 1061-1065.	21.0	74
17	A new class of non-conjugated bipolar hybrid hosts for phosphorescent organic light-emitting diodes. Journal of Materials Chemistry, 2009, 19, 8772.	6.7	69
18	Tracer diffusion of crown ethers in n-decane and n-tetradecane: an improved correlation for binary systems involving normal alkanes. Industrial & Engineering Chemistry Fundamentals, 1985, 24, 187-192.	0.7	68

#	Article	IF	Citations
19	New Insight into Photoalignment of Liquid Crystals on Coumarin-Containing Polymer Films. Macromolecules, 2006, 39, 3817-3823.	4.8	66
20	Tracer diffusion in methanol, 1-butanol and 1-octanol from 298 to 433 K. AICHE Journal, 1983, 29, 640-645.	3.6	65
21	Novel vitrifiable liquid crystals as optical materials. Advanced Materials, 1996, 8, 998-1001.	21.0	63
22	Glassy Liquid-Crystal Films with Opposite Chirality as High-Performance Optical Notch Filters and Reflectors. Advanced Materials, 2000, 12, 1283-1286.	21.0	61
23	Tracer diffusion of aromatic hydrocarbons in n-hexane up to the supercritical region. Chemical Engineering Science, 1985, 40, 2217-2224.	3.8	55
24	Tracer diffusion in dense ethanol: A generalized correlation for nonpolar and hydrogen-bonded solvents. AICHE Journal, 1986, 32, 1367-1371.	3.6	53
25	Enhanced laser performance of cholesteric liquid crystals doped with oligofluorene dye. Journal of the Optical Society of America B: Optical Physics, 2008, 25, 1496.	2.1	52
26	Diffusion of benzene, toluene, naphthalene, and phenanthrene in supercritical dense 2,3-dimethylbutane. AICHE Journal, 1985, 31, 1904-1910.	3.6	51
27	Light-Emitting Organic Materials with Variable Charge Injection and Transport Properties. Chemistry of Materials, 2006, 18, 204-213.	6.7	51
28	Tracer diffusion of aromatic hydrocarbons in liquid cyclohexane up to its critical temperature. AICHE Journal, 1985, 31, 1510-1515.	3.6	48
29	Tracer diffusion in dense methanol and 2-propanol up to supercritical region: understanding of solvent molecular association and development of an empirical correlation. Industrial & mp; Engineering Chemistry Research, 1987, 26, 815-819.	3.7	47
30	Polarized phosphorescent organic light-emitting devices adopting mesogenic host–guest systems. Organic Electronics, 2011, 12, 15-21.	2.6	46
31	Synthesis and Optical Properties of Thermotropic Polythiophene and Poly(p-phenylene) Derivatives. Macromolecules, 1998, 31, 8051-8057.	4.8	45
32	Deterministic Synthesis and Optical Properties of Glassy Chiral-Nematic Liquid Crystals. Chemistry of Materials, 2003, 15, 2534-2542.	6.7	41
33	Photoalignment of a Nematic Liquid Crystal Fluid and Glassyâ^'Nematic Oligofluorenes on Coumarin-Containing Polymer Films. Macromolecules, 2006, 39, 6983-6989.	4.8	41
34	Circularly polarized fluorescence from chiral nematic liquid crystalline films: theory and experiment. Liquid Crystals, 1998, 24, 163-172.	2.2	40
35	Circularly Polarized Photoluminescence from Gradient-Pitch Chiral-Nematic Films. Chemistry of Materials, 2001, 13, 643-647.	6.7	39
36	Novel Glass-Forming Organic Materials. 1. Adamantane with Pendant Cholesteryl, Disperse Red 1, and Nematogenic Groups. Macromolecules, 1995, 28, 7775-7778.	4.8	37

#	Article	IF	CITATIONS
37	Vitrified Chiralâ-'Nematic Liquid Crystalline Films for Selective Reflection and Circular Polarization. Chemistry of Materials, 1999, 11, 1590-1596.	6.7	37
38	Taylor dispersion measurement of the diffusivities of polymethylenes in dilute solutions. Chemical Engineering Science, 1985, 40, 521-526.	3.8	35
39	Optical notch filter using thermotropic liquid crystalline polymers. Applied Physics Letters, 1989, 54, 2395-2397.	3.3	33
40	Fluorescence Behavior of Low Molar Mass and Polymer Liquid Crystals in Ordered Solid Films. Macromolecules, 1997, 30, 4049-4055.	4.8	33
41	Evaluation of propylene-, meta-, and para-linked triazine and tert-butyltriphenylamine as bipolar hosts for phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2013, 1, 2224.	5.5	33
42	Novel glass-forming liquid crystals. II. Systems containing 1-phenyl-2-(6-cyanonaphth-2-yl)ethyne as a high optical birefringence moiety. Liquid Crystals, 1995, 18, 733-741.	2.2	32
43	A rough-hard-sphere theory for diffusion in supercritical carbon dioxide. Chemical Engineering Science, 1983, 38, 655-660.	3.8	31
44	Solid polymers doped with rare earth metal salts. I. Complex formation and morphology in the neodymium chloride-poly(ethylene oxide) system. Journal of Polymer Science, Part B: Polymer Physics, 1991, 29, 859-865.	2.1	30
45	Novel glass-forming liquid crystals. III Helical sense and twisting power in chiral nematic systems. Liquid Crystals, 1995, 19, 849-861.	2.2	30
46	Novel Glass-Forming Liquid Crystals. 6. High-Temperature Glassy Nematics. Chemistry of Materials, 2001, 13, 4584-4594.	6.7	30
47	High-damage-threshold static laser beam shaping using optically patterned liquid-crystal devices. Optics Letters, 2011, 36, 4035.	3.3	30
48	Novel glass-forming liquid crystals. IV. Effects of central core and pendant group on vitrification and morphological stability. Liquid Crystals, 1996, 21, 683-694.	2.2	29
49	Novel glassy nematic and chiral nematic oligomers derived from 1,3,5-cyclohexanetricarboxylic and $(1 < i > R < i > ,3S) - (+)$ -camphoric acids. Liquid Crystals, 1994, 17, 413-428.	2.2	28
50	High-permeability fluorinated polyimide microcapsules by vapor deposition polymerization. Polymer, 2003, 44, 995-1001.	3.8	28
51	Synthesis and Processing of Monodisperse Oligo(fluorene―co â€bithiophene)s into Oriented Films by Thermal and Solvent Annealing. Advanced Functional Materials, 2009, 19, 1978-1986.	14.9	27
52	Processing vapour-deposited polyimide. Journal Physics D: Applied Physics, 2001, 34, 3011-3018.	2.8	26
53	Effects of Dilution, Polarization Ratio, and Energy Transfer on Photoalignment of Liquid Crystals Using Coumarin-Containing Polymer Films. Macromolecules, 2008, 41, 3075-3080.	4.8	26
54	Diffusion of slightly soluble gases in liquids: Measurement and correlation with implications on liquid structures. Chemical Engineering Science, 1985, 40, 1735-1741.	3.8	25

#	Article	IF	CITATION
55	Novel Cholesteric Glassy Liquid Crystals Comprising Benzene Functionalized with Hybrid Chiral-Nematic Mesogens. Chemistry of Materials, 2008, 20, 5859-5868.	6.7	24
56	Temporal stability of blue phosphorescent organic light-emitting diodes affected by thermal annealing of emitting layers. Journal of Materials Chemistry, 2012, 22, 23175.	6.7	24
57	Temperature dependence of the properties of vapor-deposited polyimide. Journal of Applied Physics, 2003, 93, 3760-3764.	2.5	23
58	Robust organic lasers comprising glassy-cholesteric pentafluorene doped with a red-emitting oligofluorene. Applied Physics Letters, 2009, 94, 041111.	3.3	23
59	Tracer diffusion of carbon tetrachloride, S-trioxane, 12-crown-4, 15-crown-5, 18-crown-6 in acetonitrile, benzene, and chlorobenzene. AICHE Journal, 1985, 31, 76-81.	3.6	22
60	Fluorescence of Pyrenyl and Carbazolyl Derivatives in Liquid Solution and Solid Film. Journal of Physical Chemistry A, 1998, 102, 9213-9218.	2.5	22
61	Quantitative Assessment of Coumarin-Containing Polymer Film's Capability for Photoalignment of Liquid Crystals. Macromolecules, 2007, 40, 8924-8929.	4.8	22
62	Thermotropic chiral nematic side-chain polymers and cyclic oligomers. Progress in Polymer Science, 1996, 21, 1211-1233.	24.7	21
63	Novel Glass-Forming Organic Materials. 3. Cubane with Pendant Nematogens, Carbazole, and Disperse Red 1. Macromolecules, 1997, 30, 93-97.	4.8	21
64	Novel Glass-Forming Organic Materials. 2. Structure and Fluorescence of Pyrene- and Carbazole-Containing Cyclohexane, Bicyclooctene, and Adamantane. Chemistry of Materials, 1997, 9, 227-232.	6.7	21
65	Effects of stereochemistry, mesogenic core and spacer length on crystallization from nematic and isotropic melts of cyclohexane-based glass-forming liquid crystals. Liquid Crystals, 1995, 19, 785-790.	2.2	19
66	Helical sense in thermotropic liquid crystal copolymers in relation to the structure of a pendant chiral moiety. Macromolecules, 1990, 23, 1908-1911.	4.8	17
67	Analyzing nanostructures in mesogenic host–guest systems for polarized phosphorescence. Organic Electronics, 2014, 15, 311-321.	2.6	17
68	Photoracemization broadening of selective reflection and polarization band of glassy chiral-nematic films. Liquid Crystals, 2000, 27, 201-209.	2.2	16
69	The enthalpy of micellization of potassium decanoate in solutions of H2O and D2O determined with microcalorimetry. Journal of Colloid and Interface Science, 1987, 115, 437-442.	9.4	15
70	Charge-retraction time-of-flight measurement for organic charge transport materials. Applied Physics Letters, 2007, 91, 152104.	3.3	15
71	Glassy Liquid Crystals as Self-Organized Films for Robust Optoelectronic Devices. Nanoscience and Technology, 2014, , 179-208.	1.5	15
72	Dynamic mechanical properties of cyclohexane-based glass-forming liquid crystals and a linear side chain polymer analogue. Liquid Crystals, 1996, 20, 277-282.	2.2	14

#	Article	IF	CITATIONS
73	Synthesis and Characterization of Thermotropic Chiral-Nematic Polythiophenes. Macromolecules, 1998, 31, 3391-3393.	4.8	14
74	Properties of polyimide shells made using vapor phase deposition. Journal of Materials Research, 1998, 13, 2988-3000.	2.6	14
75	Tracer diffusion of crown ethers in cyclohexane. Chemical Engineering Science, 1985, 40, 819-826.	3.8	13
76	New thermotropic chiral nematic copolymers. 2. A study of helical sense and twisting power based on copolymers containing (S)-(-)-1-phenylethanol and (R)-(-)-methyl mandelate. Macromolecules, 1991, 24, 3481-3484.	4.8	13
77	Dynamic Mechanical Relaxation Behavior of Low Molecular Weight Side-Chain Cyclic Liquid Crystalline Compounds near the Glass Transition Temperature. Macromolecules, 1996, 29, 5650-5657.	4.8	13
78	Purification of thermotropic liquid-crystalline siloxane oligomer with supercritical carbon dioxide. Die Makromolekulare Chemie, 1989, 190, 1407-1412.	1.1	12
79	New thermotropic liquid crystal polymers containing the high birefringence cyanotolan moiety. Macromolecules, 1993, 26, 5840-5843.	4.8	12
80	Photochromic glassy liquid crystals comprising mesogenic pendants to dithienylethene cores. Journal of Materials Chemistry, 2008, 18, 5592.	6.7	12
81	Modification of the Stokes–Einstein Equation with a Semiempirical Microfriction Factor for Correlation of Tracer Diffusivities in Organic Solvents. Industrial & Diplomation of Tracer Diffusivities in Organic Solvents. Industrial & Diplomatical Chemistry Research, 2011, 50, 12304-12310.	3.7	12
82	Dynamics of fluid mixing induced at a T-junction. 3. Experimental characterization and fluid dynamic computation of temperature distribution in space. Industrial & Engineering Chemistry Research, 1993, 32, 1727-1733.	3.7	11
83	Thermotropic Chiralâ^'Nematic Poly(p-phenylene)s as a Paradigm of Helically Stacked Ï€-Conjugated Systems. Chemistry of Materials, 2000, 12, 2275-2281.	6.7	11
84	Device Characteristics of Organic Light-Emitting Diodes Comprising Terfluorene Modified with Triphenyltriazine. Chemistry of Materials, 2007, 19, 4043-4048.	6.7	11
85	Mixing of chemically reactive fluids by swirling in a tubular reactor. Chemical Engineering Science, 1983, 38, 1323-1329.	3.8	10
86	Polarized photoluminescence from solid films of nematic and chiral-nematic poly(p-phenylene)s. Applied Physics Letters, 2000, 77, 2982-2984.	3.3	10
87	Simplified Scheme for Deterministic Synthesis of Chiral-Nematic Glassy Liquid Crystals. Industrial & Liquid Crystals amp; Engineering Chemistry Research, 2006, 45, 4494-4499.	3.7	10
88	Translational diffusion of polystyrene in 1,4-dioxane at infinite dilution determined with the extended Taylor dispersion method. Journal of Polymer Science, Part B: Polymer Physics, 1986, 24, 817-825.	2.1	9
89	A reexamination of the synthesis of liquid crystalline side-chain polyacrylates via liquid-liquid phase-transfer catalysis. Macromolecules, 1988, 21, 904-907.	4.8	9
90	Synthesis of thermotropic liquid crystalline side-chain polymers via chemical modification of polymeric carboxylic acids. Macromolecules, 1989, 22, 2036-2039.	4.8	9

#	Article	IF	Citations
91	Some dynamic features of the preparation of liquid crystalline elastomers. Liquid Crystals, 1995, 19, 339-344.	2.2	9
92	Novel glass-forming liquid crystals V. Nematic and chiral-nematic systems with an elevated glass transition temperature. Liquid Crystals, 2000, 27, 1239-1248.	2.2	9
93	Corresponding-states correlation of tracer diffusion in liquids. Industrial & Engineering Chemistry Fundamentals, 1985, 24, 183-187.	0.7	8
94	Facilitating the formation of the Grandjean texture in thermotropic chiral nematic side-chain copolymers via modulation of backbone flexibility. Macromolecules, 1991, 24, 4472-4474.	4.8	8
95	Mesomorphic behavior of side-chain copolymers containing chiral as well as nematogenic moieties comprising p-phenylene and trans-cyclohexylene rings. Macromolecules, 1992, 25, 5119-5124.	4.8	8
96	A comparative study of helical sense and twisting power in low-molar-mass and polymeric chiral nematics. Macromolecules, 1992, 25, 4485-4489.	4.8	8
97	New thermotropic chiral nematic polymers. 3. Copolymers containing a cyanobiphenyl group and (S)-(-)-1-phenylethanol or (S)-(-)-1-phenylethylamine. Macromolecules, 1993, 26, 6132-6134.	4.8	8
98	Crystallization upon thermal annealing of a glassâ€forming liquid crystal in the nematic regime. Applied Physics Letters, 1995, 66, 2212-2214.	3.3	8
99	Molecular dynamics simulation of organic glass formers: I.ortho-terphenyl and 1,3,5-tri-?-naphthyl benzene. Journal of Computational Chemistry, 1998, 19, 86-93.	3.3	8
100	Quantitative analysis of photoalignment of liquid crystals on coumarin-containing polymer films. , 2006, , .		8
101	Spatially resolved lasers using a glassy cholesteric liquid crystal film with lateral pitch gradient. Applied Physics Letters, 2011, 98, .	3.3	8
102	Charge carrier mobility through vacuum–sublimed glassy films of s-triazine- and carbazole-based bipolar hybrid and unipolar compounds. Organic Electronics, 2013, 14, 2925-2931.	2.6	8
103	Scalable Synthesis of Cholesteric Glassy Liquid Crystals. Industrial & Engineering Chemistry Research, 2018, 57, 4470-4473.	3.7	8
104	Simulation of Circular Dichroism by Chromophores Coupled with Selective Reflection by Cholesteric Stacks. Journal of Physical Chemistry B, 2020, 124, 679-683.	2.6	8
105	Tracer diffusion of crown ethers in chlorobenzene from 301 to 373 K. Chemical Engineering Science, 1984, 39, 663-667.	3.8	6
106	Mixing induced by flow geometry: Spatial distribution and time evolution of the measures of mechanical mixedness. Chemical Engineering Science, 1985, 40, 2225-2232.	3.8	6
107	A parametric study of microencapsulation approach to the preparation of polystyrene shells. Polymer, 1997, 38, 1639-1646.	3.8	6
108	Translational diffusion of poly(methyl methacrylate) in acetone: wormlike vs. freely jointed chain model. Macromolecules, 1987, 20, 138-142.	4.8	5

#	Article	IF	CITATIONS
109	Quantification of mixing from the Eulerian perspective: Flow through a curved tube. Chemical Engineering Science, 1987, 42, 2484-2486.	3.8	5
110	Solid polymers doped with rare earth metal salts. II. Thermal behavior and morphology of the neodymium acetate–poly(ethylene oxide) system. Journal of Polymer Science, Part B: Polymer Physics, 1993, 31, 647-654.	2.1	5
111	Poly[(methylene oxide) oligo(ethylene oxide)] vs. poly(ethylene oxide) as hosts for neodymium compounds. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 1687-1695.	2.1	5
112	Glass-Forming Ability and Morphological Stability of Cyclohexane and Bicyclooctene Rings Containing Disperse Red 1. Chemistry of Materials, 1995, 7, 1904-1908.	6.7	5
113	Mesomorphic Ceramic Films Synthesized <i>via</i> Lyotropic Self-Assembly of Metal Oxide Nanorods Complete with Sintering. ACS Applied Nano Materials, 2020, 3, 10605-10611.	5.0	5
114	An evaluation of the lamellar stretch description of mixing with diffusion and chemical reaction. AICHE Journal, 1986, 32, 1043-1048.	3.6	4
115	New thermotropic chiral nematic copolymers using (1S,2S,3S,5R)-(+)- and (1R,2R,3R,5S)-(-)-isopinocampheol as building blocks. Macromolecules, 1990, 23, 5055-5058.	4.8	4
116	Glassy Liquid Crystals for Tunable Reflective Coloration. ACS Symposium Series, 2004, , 290-306.	0.5	4
117	Roomâ€temperature processing of <i>Ï€</i> à€conjugated oligomers into uniaxially oriented monodomain films on coumarinâ€based photoalignment layers. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 725-731.	2.1	4
118	Hydrodynamic radius of polystyrene in n-butylchloride. Macromolecules, 1988, 21, 1176-1177.	4.8	3
119	Dynamics of fluid mixing at a T-junction with implications on natural gas processing. Industrial & Dynamics of fluid mixing at a T-junction with implications on natural gas processing. Industrial & Dynamics of fluid mixing at a T-junction with implications on natural gas processing. Industrial & Dynamics of fluid mixing at a T-junction with implications on natural gas processing. Industrial & Dynamics of fluid mixing at a T-junction with implications on natural gas processing. Industrial & Dynamics of fluid mixing at a T-junction with implications on natural gas processing. Industrial & Dynamics of fluid mixing at a T-junction with implications on natural gas processing. Industrial & Dynamics of fluid mixing at a T-junction with implications on natural gas processing. Industrial & Dynamics of fluid mixing at a T-junction with implications on natural gas processing. Industrial & Dynamics of fluid mixing at a T-junction with implications on natural gas processing. Industrial & Dynamics of fluid mixing at a T-junction with implications of fluid mixing at a T-junction with implication of fluid mixing at a T-junction of flu	3.7	3
120	Solid polymers doped with rare earth metal compounds. III. Formation and stability of macromolecular complexes comprising neodymium nitrate and dipivaloylmethane in poly(ethylene) Tj ETQq0 0 0 r	rgBT /Ovei	rl s ck 10 Tf 5
121	Mesomorphic Ceramic Film Fabricated via Blade Coating of a Lyotropic Nematic Liquid Crystal for High-Power Lasers. ACS Applied Nano Materials, 0, , .	5.0	3
122	Translational diffusion of relatively short polystyrene chains in cyclohexane. II. An interpretation of hydrodynamic radius with the freely jointed chain model. Journal of Polymer Science, Part B: Polymer Physics, 1987, 25, 1473-1480.	2.1	2
123	The velocity profile and resultant mixing with chemical reaction in rotating tubular flow. Chemical Engineering Science, 1987, 42, 53-61.	3.8	2
124	Thermotropic and optical properties of chiral nematic polymers. International Journal of Thermophysics, 1990, 11, 213-223.	2.1	2
125	<title>Processing of alignment layers for glassy liquid crystals</title> ., 2000, 4107, 174.		2
126	Multifunctional glassy liquid crystals for photonics. Journal of the Society for Information Display, 2004, 12, 205.	2.1	2

#	Article	IF	Citations
127	Glassy nematic conjugated oligomers: materials for organic light-emitting diodes. , 2004, , .		2
128	Modulation of Phase Separation Between Spherical and Rodlike Molecules Using Geometric Surfactancy. Langmuir, 2010, 26, 12877-12881.	3.5	2
129	Corresponding states correlation of dissolved-gas diffusion in normal alkanes. AICHE Journal, 1984, 30, 481-482.	3.6	1
130	Helical Sense and Twisting Power in Thermotropic Side–Chain Copolymers. Materials Research Society Symposia Proceedings, 1990, 214, 143.	0.1	1
131	Dynamics of fluid mixing induced at a T-junction. 2. An evaluation of a mathematical model with existing experimental observations. Industrial & Engineering Chemistry Research, 1991, 30, 1646-1651.	3.7	1
132	<title>Circularly polarized photoluminescence from the resonance region of chiral-nematic poly(p-phenylene) films</title> ., 2000, 4107, 77.		1
133	P-170: Novel Ferroelectric Glassy Liquid Crystal and Mixtures with Wide SmCâ^— Mesophase. Digest of Technical Papers SID International Symposium, 2006, 37, 857.	0.3	1
134	Enthalpy versus entropy: What drives hard-particle ordering in condensed phases?. Chemical Physics Letters, 2016, 660, 18-21.	2.6	1
135	Novel light-emitting organic materials with variable electron and hole conductivities. , 2005, , .		1
136	MIXING WITH DIFFUSION AND FAST CHEMICAL REACTION IN SIMPLE SHEAR FLOW: A COMPARISON OF STRETCH MODEL TO TWO-DIMENSIONAL DIFFUSION WITH PERIODIC BOUNDARY CONDITIONS. Chemical Engineering Communications, 1987, 59, 277-291.	2.6	0
137	The preparation of liquid-crystalline side-chain polyacrylate by chemically modifying poly(sodium) Tj ETQq1 1 0.784	43.14 rgBT 4.8	<i> </i> Overlock
138	Solid Polymers Doped with Neodymium. Complex Formation and Morphology in NdCl3 and Nd(DPM)3-Poly(Ethylene Oxide) Systems. Materials Research Society Symposia Proceedings, 1990, 210, 279.	0.1	0
139	Stoichiometry and morphology in terbium nitrate-poly(ethylene oxide) macromolecular complex. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 1573-1577.	2.1	O
140	Photoalignment of Glassy-Nematic Oligofluorenes on Coumarin-Containing Polymer Films. , 2006, , OPTuD5.		O
141	Photoalignment of monodisperse glassy-nematic oligofluorenes. Proceedings of SPIE, 2007, , .	0.8	O
142	64.1: <i>Invited Paper</i> : Polarized OLEDS as Backlight for Liquid Crystal Displays. Digest of Technical Papers SID International Symposium, 2007, 38, 1765-1767.	0.3	O
143	Cholesteric Glassy Liquid Crystals for Photonics. , 2019, , .		O
144	Photonic applications of glassy liquid crystals. , 2005, , .		0

ARTICLE IF CITATIONS

145 Oligofluorene as a New High-Performance Dye for Cholesteric Liquid Crystal Lasers., 2006,,... o