Karen M Page

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9187075/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dying to cooperate: the role of environmental harshness in human collaboration. Behavioral Ecology, 2022, 33, 190-201.	2.2	2
2	â€~Neighbourhood watch' model: embryonic epiblast cells assess positional information in relation to their neighbours. Development (Cambridge), 2022, 149, .	2.5	8
3	Structure modeling hints at a granular organization of the Golgi ribbon. BMC Biology, 2022, 20, 111.	3.8	4
4	Cooperative success in epithelial public goods games. Journal of Theoretical Biology, 2021, 528, 110838.	1.7	3
5	Gene expression dysregulation domains are not a specific feature of Down syndrome. Nature Communications, 2019, 10, 2489.	12.8	19
6	Evolution of cooperation in an epithelium. Journal of the Royal Society Interface, 2019, 16, 20180918.	3.4	5
7	Oscillations in well-mixed, deterministic feedback systems: Beyond ring oscillators. Journal of Theoretical Biology, 2019, 481, 44-53.	1.7	5
8	de la Cruz etÂal. Reply. Physical Review Letters, 2019, 122, 059802.	7.8	0
9	Neuronal differentiation influences progenitor arrangement in the vertebrate neuroepithelium. Development (Cambridge), 2019, 146, .	2.5	19
10	Combining a Toggle Switch and a Repressilator within the AC-DC Circuit Generates Distinct Dynamical Behaviors. Cell Systems, 2018, 6, 521-530.e3.	6.2	96
11	Minimum Action Path Theory Reveals the Details of Stochastic Transitions Out of Oscillatory States. Physical Review Letters, 2018, 120, 128102.	7.8	15
12	Degradation rate uniformity determines success of oscillations in repressive feedback regulatory networks. Journal of the Royal Society Interface, 2018, 15, 20180157.	3.4	13
13	Intrinsic Noise Profoundly Alters the Dynamics and Steady State of Morphogen-Controlled Bistable Genetic Switches. PLoS Computational Biology, 2016, 12, e1005154.	3.2	60
14	Mathematical models help explain experimental data. Response to â€Transcriptional interpretation of Shh morphogen signaling: computational modeling validates empirically established models'. Development (Cambridge), 2016, 143, 1640-1643.	2.5	0
15	Ptch1 and Gli regulate Shh signalling dynamics via multiple mechanisms. Nature Communications, 2015, 6, 6709.	12.8	123
16	Directional Collective Cell Migration Emerges as a Property of Cell Interactions. PLoS ONE, 2014, 9, e104969.	2.5	68
17	A theoretical framework for the regulation of Shh morphogen-controlled gene expression. Development (Cambridge), 2014, 141, 3868-3878.	2.5	70
18	A gene regulatory motif that generates oscillatory or multiway switch outputs. Journal of the Royal Society Interface, 2013, 10, 20120826.	3.4	61

Karen M Page

#	Article	IF	CITATIONS
19	Gene Regulatory Logic for Reading the Sonic Hedgehog Signaling Gradient in the Vertebrate Neural Tube. Cell, 2012, 148, 273-284.	28.9	417
20	Mathematical Modeling of the VEGF Receptor. , 2012, , 3-35.		0
21	The Immuno-Dynamics of Conflict Intervention in Social Systems. PLoS ONE, 2011, 6, e22709.	2.5	6
22	Discrete free-boundary reaction-diffusion model of diatom pore occlusions. Plant Ecology and Evolution, 2010, 143, 297-306.	0.7	19
23	Breast Cancer Dormancy Can Be Maintained by Small Numbers of Micrometastases. Cancer Research, 2010, 70, 4310-4317.	0.9	42
24	Analysis of BCR-ABL1 Tyrosine Kinase Domain Mutations In Primitive Chronic Myeloid Leukemia Cells Identifies a Unique Mutator Phenotype Blood, 2010, 116, 3397-3397.	1.4	0
25	Diversity, Dilemmas, and Monopolies of Niche Construction. American Naturalist, 2009, 173, 26-40.	2.1	93
26	18-P002 A Sonic Hedgehog controlled gene network in the neural tube acts as a multistate switch to generate progenitors of distinct neuronal subtypes. Mechanisms of Development, 2009, 126, S285.	1.7	0
27	Speed of reaction diffusion in embryogenesis. Physical Review E, 2007, 76, 011902.	2.1	2
28	Mathematical models of the VEGF receptor and its role in cancer therapy. Journal of the Royal Society Interface, 2007, 4, 283-304.	3.4	24
29	Stochastic models of receptor oligomerization by bivalent ligand. Journal of the Royal Society Interface, 2006, 3, 545-559.	3.4	18
30	Mathematical models of the fate of lymphoma B cells after antigen receptor ligation with specific antibodies. Journal of Theoretical Biology, 2006, 240, 54-71.	1.7	7
31	Complex pattern formation in reaction–diffusion systems with spatially varying parameters. Physica D: Nonlinear Phenomena, 2005, 202, 95-115.	2.8	104
32	Mathematical models of cancer dormancy. Leukemia and Lymphoma, 2005, 46, 313-327.	1.3	48
33	Language learning: how much evidence does a child need in order to learn to speak grammatically?. Bulletin of Mathematical Biology, 2004, 66, 651-662.	1.9	0
34	Pattern formation in spatially heterogeneous Turing reaction–diffusion models. Physica D: Nonlinear Phenomena, 2003, 181, 80-101.	2.8	67
35	Empathy Leads to Fairness. Bulletin of Mathematical Biology, 2002, 64, 1101-1116.	1.9	104
36	Unifying Evolutionary Dynamics. Journal of Theoretical Biology, 2002, 219, 93-98.	1.7	161

#	Article	IF	CITATIONS
37	A Model of Primitive Streak Initiation in the Chick Embryo. Journal of Theoretical Biology, 2001, 208, 419-438.	1.7	12