Daniela Valensin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9186085/publications.pdf

Version: 2024-02-01

159585 114465 4,430 67 30 63 citations h-index g-index papers 67 67 67 4828 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Metal specificity of the Ni(<scp>ii</scp>) and Zn(<scp>ii</scp>) binding sites of the N-terminal and G-domain of <i>E. coli</i> i> HypB. Dalton Transactions, 2021, 50, 12635-12647.	3.3	1
2	Dynamic Interplay between Copper Toxicity and Mitochondrial Dysfunction in Alzheimer's Disease. Life, 2021, 11, 386.	2.4	5
3	Metal Complexation Mechanisms of Polyphenols Associated to Alzheimer's Disease. Current Medicinal Chemistry, 2021, 28, 7278-7294.	2.4	7
4	Binding and Reactivity of Copper to R $<$ sub $>$ 1 $<$ /sub $>$ and R $<$ sub $>$ 3 $<$ /sub $>$ Fragments of tau Protein. Inorganic Chemistry, 2020, 59, 274-286.	4.0	33
5	Novel Perspective on Alzheimer's Disease Treatment: Rosmarinic Acid Molecular Interplay with Copper(II) and Amyloid β. Life, 2020, 10, 118.	2.4	16
6	Zn(II)-alloferon complexes – Similar sequence, different coordination modes, no antibacterial activity. Journal of Inorganic Biochemistry, 2020, 213, 111275.	3.5	0
7	Metal Complexes of Two Specific Regions of ZnuA, a Periplasmic Zinc(II) Transporter from <i>Escherichia coli</i> . Inorganic Chemistry, 2020, 59, 1947-1958.	4.0	9
8	Fibrils of α-Synuclein Abolish the Affinity of Cu ²⁺ -Binding Site to His50 and Induce Hopping of Cu ²⁺ lons in the Termini. Inorganic Chemistry, 2019, 58, 10920-10927.	4.0	12
9	The role of methylation in the copper(<scp>ii</scp>) coordination properties of a His-containing decapeptide. Dalton Transactions, 2019, 48, 1859-1870.	3.3	2
10	Structural analysis of copper(I) interaction with amyloid \hat{l}^2 peptide. Journal of Inorganic Biochemistry, 2019, 195, 31-38.	3. 5	25
11	Chemically stable inhibitors of 14-3-3 protein–protein interactions derived from BV02. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 657-664.	5.2	12
12	How copper ions and membrane environment influence the structure of the human and chicken tandem repeats domain?. Journal of Inorganic Biochemistry, 2019, 191, 143-153.	3.5	5
13	Structure, Function, Involvement in Diseases and Targeting of 14-3-3 Proteins: An Update. Current Medicinal Chemistry, 2018, 25, 5-21.	2.4	56
14	The effect of a membrane-mimicking environment on the interactions of Cu ²⁺ with an amyloidogenic fragment of chicken prion protein. Dalton Transactions, 2017, 46, 7758-7769.	3.3	6
15	Coordination and redox properties of copper interaction with α-synuclein. Journal of Inorganic Biochemistry, 2016, 163, 292-300.	3.5	43
16	Influence of membrane environments and copper ions on the structural features of amyloidogenic proteins correlated to neurodegeneration. Coordination Chemistry Reviews, 2016, 327-328, 8-19.	18.8	8
17	DOES hemopressin bind metal ions in vivo?. Dalton Transactions, 2016, 45, 18267-18280.	3.3	5
18	Copper(I) Forms a Redox-Stable 1:2 Complex with \hat{l}_{\pm} -Synuclein N-Terminal Peptide in a Membrane-Like Environment. Inorganic Chemistry, 2016, 55, 6100-6106.	4.0	23

#	Article	IF	CITATIONS
19	Specific binding modes of Cu(l) and Ag(l) with neurotoxic domain of the human prion protein. Journal of Inorganic Biochemistry, 2016, 155, 26-35.	3.5	16
20	Copper(I/II), α/βâ€Synuclein and Amyloidâ€Î²: Menage à Trois?. ChemBioChem, 2015, 16, 2319-2328.	2.6	38
21	Differences in the Binding of Copper(I) to α- and β-Synuclein. Inorganic Chemistry, 2015, 54, 265-272.	4.0	32
22	Metal ion mediated transition from random coil to \hat{l}^2 -sheet and aggregation of Bri2-23, a natural inhibitor of $A\hat{l}^2$ aggregation. Metallomics, 2015, 7, 478-490.	2.4	7
23	Impact of SDS surfactant on the interactions of Cu ²⁺ ions with the amyloidogenic region of human prion protein. Dalton Transactions, 2015, 44, 13125-13132.	3.3	12
24	Remote His50 Acts as a Coordination Switch in the High-Affinity N-Terminal Centered Copper(II) Site of α-Synuclein. Inorganic Chemistry, 2015, 54, 4744-4751.	4.0	35
25	Reactivity of copper–α-synuclein peptide complexes relevant to Parkinson's disease. Metallomics, 2015, 7, 1091-1102.	2.4	39
26	Interactions of metal ions with \hat{l}_{\pm} synuclein and amyloid \hat{l}^2 peptides. , 2014, , .		0
27	NMR investigations of metal interactions with unstructured soluble protein domains. Coordination Chemistry Reviews, 2014, 269, 1-12.	18.8	33
28	Copper-induced structural propensities of the amyloidogenic region of human prion protein. Journal of Biological Inorganic Chemistry, 2014, 19, 635-645.	2.6	19
29	The unusual stabilization of the Ni ²⁺ and Cu ²⁺ complexes with NSFRY. Dalton Transactions, 2013, 42, 448-458.	3.3	13
30	The extracellular loop of IRT1 ZIP protein â€" the chosen one for zinc?. Journal of Inorganic Biochemistry, 2013, 127, 246-252.	3.5	17
31	Copper(I)-α-Synuclein Interaction: Structural Description of Two Independent and Competing Metal Binding Sites. Inorganic Chemistry, 2013, 52, 1358-1367.	4.0	58
32	Specific metal ion binding sites in unstructured regions of proteins. Coordination Chemistry Reviews, 2013, 257, 2625-2638.	18.8	63
33	Copper, zinc and iron in neurodegenerative diseases (Alzheimer's, Parkinson's and prion diseases). Coordination Chemistry Reviews, 2012, 256, 2129-2141.	18.8	354
34	Metal compounds as inhibitors of \hat{l}^2 -amyloid aggregation. Perspectives for an innovative metallotherapeutics on Alzheimer's disease. Coordination Chemistry Reviews, 2012, 256, 2357-2366.	18.8	65
35	Thermodynamic and spectroscopic investigation on the role of Met residues in Cull binding to the non-octarepeat site of the human prion protein. Metallomics, 2012, 4, 794.	2.4	22
36	NMR metabolomic investigation of astrocytes interacted with $A\hat{l}^242$ or its complexes with either copper(II) or zinc(II). Journal of Inorganic Biochemistry, 2012, 117, 326-333.	3.5	11

#	Article	IF	Citations
37	Structural characterization of Cu2+, Ni2+ and Zn2+ binding sites of model peptides associated with neurodegenerative diseases. Coordination Chemistry Reviews, 2012, 256, 352-368.	18.8	100
38	Exploring the Reactions of β-Amyloid (Aβ) Peptide 1–28 with AlIIIand FeIIIIons. Inorganic Chemistry, 2011, 50, 6865-6867.	4.0	42
39	The role of His-50 of \hat{l}_{\pm} -synuclein in binding Cu(ii): pH dependence, speciation, thermodynamics and structure. Metallomics, 2011, 3, 292.	2.4	38
40	Copper binding to chicken and human prion protein amylodogenic regions: Differences and similarities revealed by Ni2+ as a diamagnetic probe. Journal of Inorganic Biochemistry, 2010, 104, 71-78.	3.5	30
41	Bioinorganic Chemistry of Parkinson's Disease: Structural Determinants for the Copper-Mediated Amyloid Formation of Alpha-Synuclein. Inorganic Chemistry, 2010, 49, 10668-10679.	4.0	119
42	<i>fac</i> -{Ru(CO) ₃ } ²⁺ Selectively Targets the Histidine Residues of the β-Amyloid Peptide 1-28. Implications for New Alzheimer's Disease Treatments Based on Ruthenium Complexes. Inorganic Chemistry, 2010, 49, 4720-4722.	4.0	76
43	Copper, iron, and zinc ions homeostasis and their role in neurodegenerative disorders (metal uptake,) Tj ETQq1	1 0.78431 18.8	4 rgBT /Over
44	Molecular Dynamics Study of the Cu ²⁺ Binding-Induced "Structuring―of the N-Terminal Domain of Human Prion Protein. Journal of Physical Chemistry B, 2009, 113, 3277-3279.	2.6	16
45	The complex-formation behaviour of His residues in the fifth Cu2+ binding site of human prion protein: a close look. New Journal of Chemistry, 2009, 33, 2300.	2.8	23
46	Copper(ii) coordination outside the tandem repeat region of an unstructured domain of chicken prion protein. Molecular BioSystems, 2009, 5, 497.	2.9	16
47	Heteronuclear and Homonuclear Cu ²⁺ and Zn ²⁺ Complexes with Multihistidine Peptides Based on Zebrafish Prion-like Protein. Inorganic Chemistry, 2009, 48, 7330-7340.	4.0	27
48	Specificity in the Cu2+ interactions with prion protein fragments and related His-rich peptides from mammals to fishes. Coordination Chemistry Reviews, 2008, 252, 1069-1078.	18.8	66
49	Cull binding sites located at His-96 and His-111 of the human prion protein: thermodynamic and spectroscopic studies on model peptides. Dalton Transactions, 2008, , 5207.	3.3	49
50	Structural features of the Cu(ii) complex with the rat $A\hat{l}^2(1\hat{a}\in "28)$ fragment. Chemical Communications, 2008, , 341-343.	4.1	48
51	Structural Characterization of the Intra- and Inter-Repeat Copper Binding Modes within the N-Terminal Region of "Prion Related Protein―(PrP-rel-2) of Zebrafish. Journal of Physical Chemistry B, 2008, 112, 15140-15150.	2.6	21
52	NMR Studies of the Zn ²⁺ Interactions with Rat and Human \hat{l}^2 -Amyloid ($l\hat{a}^2$ 28) Peptides in Water-Micelle Environment. Journal of Physical Chemistry B, 2008, 112, 100-109.	2.6	98
53	Structural and Dynamic Characterization of Copper(II) Binding of the Human Prion Protein Outside the Octarepeat Region. Chemistry - A European Journal, 2007, 13, 1991-2001.	3.3	60

Copper Homeostasis and Neurodegenerative Disorders (Alzheimer's, Prion, and Parkinson's Diseases) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

#	Article	IF	Citations
55	Metal Ion Binding Properties of Proteins Related to Neurodegeneration. , 2006, , 61-87.		1
56	Structure and Stability of the Cull Complexes with Tandem Repeats of the Chicken Prion. Biochemistry, 2005, 44, 12940-12954.	2.5	36
57	NMR studies on Cu(ii) \hat{a} emperide complexes: exchange kinetics and determination of structures in solution. Molecular BioSystems, 2005, 1, 79.	2.9	40
58	Fine tuning the structure of the Cu2+ complex with the prion protein chicken repeat by proline isomerization. Chemical Communications, 2005, , 3298.	4.1	12
59	Interaction Of The Human Prion PrP(106â^126) Sequence With Copper(II), Manganese(II), And Zinc(II):Â NMR and EPR Studies. Journal of the American Chemical Society, 2005, 127, 996-1006.	13.7	127
60	Probing the role of metal ions on reversible peptide–protein interactions by NMR. Spectroscopy, 2004, 18, 251-256.	0.8	0
61	Copper Binding to the Neurotoxic Peptide PrP106-126: Thermodynamic and Structural Studies. ChemBioChem, 2004, 5, 349-359.	2.6	63
62	Identification of a novel high affinity copper binding site in the APP(145–155) fragment of amyloid precursor protein. Dalton Transactions, 2004, , 16-22.	3.3	52
63	The dimeric and tetrameric octarepeat fragments of prion protein behave differently to its monomeric unit. Dalton Transactions, 2004, , 1284-1293.	3.3	93
64	Cull Ion Coordination to an Unprotected Pentadecapeptide Containing Two His Residues: Competition Between the Terminal Amino and the Side-Chain Imidazole Nitrogen Donors. European Journal of Inorganic Chemistry, 2003, 2003, 1694-1702.	2.0	10
65	1H NMR studies of copper binding by histidine-containing peptides. Magnetic Resonance in Chemistry, 2003, 41, 877-883.	1.9	40
66	Is the monomeric prion octapeptide repeat PHGGGWGQ a specific ligand for Cu2+ ions?. Dalton Transactions RSC, 2002, , 2269-2274.	2.3	84
67	Cu(ii) ion coordination to the pentadecapeptide model of the SPARC copper-binding site. Dalton Transactions RSC, 2002, , 3939.	2.3	26