
Daniela Valensin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9186085/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Copper Homeostasis and Neurodegenerative Disorders (Alzheimer's, Prion, and Parkinson's Diseases) Tj ETQq1 I	1 0.784314 47.7	rgBT /Overl

 $_2$ Copper, iron, and zinc ions homeostasis and their role in neurodegenerative disorders (metal uptake,) Tj ETQq0 0 0 $_{18.87}^{rgBT}$ /Overlock 10 Tf

3	Copper, zinc and iron in neurodegenerative diseases (Alzheimer's, Parkinson's and prion diseases). Coordination Chemistry Reviews, 2012, 256, 2129-2141.	18.8	354
4	Interaction Of The Human Prion PrP(106â^'126) Sequence With Copper(II), Manganese(II), And Zinc(II):Â NMR and EPR Studies. Journal of the American Chemical Society, 2005, 127, 996-1006.	13.7	127
5	Bioinorganic Chemistry of Parkinson's Disease: Structural Determinants for the Copper-Mediated Amyloid Formation of Alpha-Synuclein. Inorganic Chemistry, 2010, 49, 10668-10679.	4.0	119
6	Structural characterization of Cu2+, Ni2+ and Zn2+ binding sites of model peptides associated with neurodegenerative diseases. Coordination Chemistry Reviews, 2012, 256, 352-368.	18.8	100
7	NMR Studies of the Zn ²⁺ Interactions with Rat and Human β-Amyloid (1â^'28) Peptides in Water-Micelle Environment. Journal of Physical Chemistry B, 2008, 112, 100-109.	2.6	98
8	The dimeric and tetrameric octarepeat fragments of prion protein behave differently to its monomeric unit. Dalton Transactions, 2004, , 1284-1293.	3.3	93
9	Is the monomeric prion octapeptide repeat PHGGGWGQ a specific ligand for Cu2+ ions?. Dalton Transactions RSC, 2002, , 2269-2274.	2.3	84
10	<i>>fac</i> -{Ru(CO) ₃ } ²⁺ Selectively Targets the Histidine Residues of the β-Amyloid Peptide 1-28. Implications for New Alzheimer's Disease Treatments Based on Ruthenium Complexes. Inorganic Chemistry, 2010, 49, 4720-4722.	4.0	76
11	Specificity in the Cu2+ interactions with prion protein fragments and related His-rich peptides from mammals to fishes. Coordination Chemistry Reviews, 2008, 252, 1069-1078.	18.8	66
12	Metal compounds as inhibitors of \hat{l}^2 -amyloid aggregation. Perspectives for an innovative metallotherapeutics on Alzheimer's disease. Coordination Chemistry Reviews, 2012, 256, 2357-2366.	18.8	65
13	Copper Binding to the Neurotoxic Peptide PrP106-126: Thermodynamic and Structural Studies. ChemBioChem, 2004, 5, 349-359.	2.6	63
14	Specific metal ion binding sites in unstructured regions of proteins. Coordination Chemistry Reviews, 2013, 257, 2625-2638.	18.8	63
15	Structural and Dynamic Characterization of Copper(II) Binding of the Human Prion Protein Outside the Octarepeat Region. Chemistry - A European Journal, 2007, 13, 1991-2001.	3.3	60
16	Copper(I)-α-Synuclein Interaction: Structural Description of Two Independent and Competing Metal Binding Sites. Inorganic Chemistry, 2013, 52, 1358-1367.	4.0	58
17	Structure, Function, Involvement in Diseases and Targeting of 14-3-3 Proteins: An Update. Current Medicinal Chemistry, 2018, 25, 5-21.	2.4	56
18	Identification of a novel high affinity copper binding site in the APP(145–155) fragment of amyloid precursor protein. Dalton Transactions, 2004, , 16-22.	3.3	52

DANIELA VALENSIN

#	Article	IF	CITATIONS
19	Cull binding sites located at His-96 and His-111 of the human prion protein: thermodynamic and spectroscopic studies on model peptides. Dalton Transactions, 2008, , 5207.	3.3	49
20	Structural features of the Cu(ii) complex with the rat Aβ(1–28) fragment. Chemical Communications, 2008, , 341-343.	4.1	48
21	Coordination and redox properties of copper interaction with α-synuclein. Journal of Inorganic Biochemistry, 2016, 163, 292-300.	3.5	43
22	Exploring the Reactions of β-Amyloid (Aβ) Peptide 1–28 with AlIIIand FeIIIIons. Inorganic Chemistry, 2011, 50, 6865-6867.	4.0	42
23	1H NMR studies of copper binding by histidine-containing peptides. Magnetic Resonance in Chemistry, 2003, 41, 877-883.	1.9	40
24	NMR studies on Cu(ii)–peptide complexes: exchange kinetics and determination of structures in solution. Molecular BioSystems, 2005, 1, 79.	2.9	40
25	Reactivity of copper–α-synuclein peptide complexes relevant to Parkinson's disease. Metallomics, 2015, 7, 1091-1102.	2.4	39
26	The role of His-50 of α-synuclein in binding Cu(ii): pH dependence, speciation, thermodynamics and structure. Metallomics, 2011, 3, 292.	2.4	38
27	Copper(I/II), α/β‧ynuclein and Amyloidâ€Î²: Menage à Trois?. ChemBioChem, 2015, 16, 2319-2328.	2.6	38
28	Structure and Stability of the Cull Complexes with Tandem Repeats of the Chicken Prion. Biochemistry, 2005, 44, 12940-12954.	2.5	36
29	Remote His50 Acts as a Coordination Switch in the High-Affinity N-Terminal Centered Copper(II) Site of α-Synuclein. Inorganic Chemistry, 2015, 54, 4744-4751.	4.0	35
30	NMR investigations of metal interactions with unstructured soluble protein domains. Coordination Chemistry Reviews, 2014, 269, 1-12.	18.8	33
31	Binding and Reactivity of Copper to R ₁ and R ₃ Fragments of tau Protein. Inorganic Chemistry, 2020, 59, 274-286.	4.0	33
32	Differences in the Binding of Copper(I) to \hat{I}_{\pm} - and \hat{I}^2 -Synuclein. Inorganic Chemistry, 2015, 54, 265-272.	4.0	32
33	Copper binding to chicken and human prion protein amylodogenic regions: Differences and similarities revealed by Ni2+ as a diamagnetic probe. Journal of Inorganic Biochemistry, 2010, 104, 71-78.	3.5	30
34	Heteronuclear and Homonuclear Cu ²⁺ and Zn ²⁺ Complexes with Multihistidine Peptides Based on Zebrafish Prion-like Protein. Inorganic Chemistry, 2009, 48, 7330-7340.	4.0	27
35	Cu(ii) ion coordination to the pentadecapeptide model of the SPARC copper-binding site. Dalton Transactions RSC, 2002, , 3939.	2.3	26
36	Structural analysis of copper(I) interaction with amyloid β peptide. Journal of Inorganic Biochemistry, 2019, 195, 31-38.	3.5	25

3

DANIELA VALENSIN

#	Article	IF	CITATIONS
37	The complex-formation behaviour of His residues in the fifth Cu2+ binding site of human prion protein: a close look. New Journal of Chemistry, 2009, 33, 2300.	2.8	23
38	Copper(I) Forms a Redox-Stable 1:2 Complex with α-Synuclein N-Terminal Peptide in a Membrane-Like Environment. Inorganic Chemistry, 2016, 55, 6100-6106.	4.0	23
39	Thermodynamic and spectroscopic investigation on the role of Met residues in Cull binding to the non-octarepeat site of the human prion protein. Metallomics, 2012, 4, 794.	2.4	22
40	Structural Characterization of the Intra- and Inter-Repeat Copper Binding Modes within the N-Terminal Region of "Prion Related Protein―(PrP-rel-2) of Zebrafish. Journal of Physical Chemistry B, 2008, 112, 15140-15150.	2.6	21
41	Copper-induced structural propensities of the amyloidogenic region of human prion protein. Journal of Biological Inorganic Chemistry, 2014, 19, 635-645.	2.6	19
42	The extracellular loop of IRT1 ZIP protein — the chosen one for zinc?. Journal of Inorganic Biochemistry, 2013, 127, 246-252.	3.5	17
43	Molecular Dynamics Study of the Cu ²⁺ Binding-Induced "Structuring―of the N-Terminal Domain of Human Prion Protein. Journal of Physical Chemistry B, 2009, 113, 3277-3279.	2.6	16
44	Copper(ii) coordination outside the tandem repeat region of an unstructured domain of chicken prion protein. Molecular BioSystems, 2009, 5, 497.	2.9	16
45	Specific binding modes of Cu(I) and Ag(I) with neurotoxic domain of the human prion protein. Journal of Inorganic Biochemistry, 2016, 155, 26-35.	3.5	16
46	Novel Perspective on Alzheimer's Disease Treatment: Rosmarinic Acid Molecular Interplay with Copper(II) and Amyloid β. Life, 2020, 10, 118.	2.4	16
47	The unusual stabilization of the Ni ²⁺ and Cu ²⁺ complexes with NSFRY. Dalton Transactions, 2013, 42, 448-458.	3.3	13
48	Fine tuning the structure of the Cu2+ complex with the prion protein chicken repeat by proline isomerization. Chemical Communications, 2005, , 3298.	4.1	12
49	Impact of SDS surfactant on the interactions of Cu ²⁺ ions with the amyloidogenic region of human prion protein. Dalton Transactions, 2015, 44, 13125-13132.	3.3	12
50	Fibrils of α-Synuclein Abolish the Affinity of Cu ²⁺ -Binding Site to His50 and Induce Hopping of Cu ²⁺ lons in the Termini. Inorganic Chemistry, 2019, 58, 10920-10927.	4.0	12
51	Chemically stable inhibitors of 14-3-3 protein–protein interactions derived from BV02. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 657-664.	5.2	12
52	NMR metabolomic investigation of astrocytes interacted with Al²42 or its complexes with either copper(II) or zinc(II). Journal of Inorganic Biochemistry, 2012, 117, 326-333.	3.5	11
53	Cull Ion Coordination to an Unprotected Pentadecapeptide Containing Two His Residues: Competition Between the Terminal Amino and the Side-Chain Imidazole Nitrogen Donors. European Journal of Inorganic Chemistry, 2003, 2003, 1694-1702.	2.0	10
54	Metal Complexes of Two Specific Regions of ZnuA, a Periplasmic Zinc(II) Transporter from <i>Escherichia coli</i> . Inorganic Chemistry, 2020, 59, 1947-1958.	4.0	9

DANIELA VALENSIN

#	Article	IF	CITATIONS
55	Influence of membrane environments and copper ions on the structural features of amyloidogenic proteins correlated to neurodegeneration. Coordination Chemistry Reviews, 2016, 327-328, 8-19.	18.8	8
56	Metal ion mediated transition from random coil to \hat{l}^2 -sheet and aggregation of Bri2-23, a natural inhibitor of $A\hat{l}^2$ aggregation. Metallomics, 2015, 7, 478-490.	2.4	7
57	Metal Complexation Mechanisms of Polyphenols Associated to Alzheimer's Disease. Current Medicinal Chemistry, 2021, 28, 7278-7294.	2.4	7
58	The effect of a membrane-mimicking environment on the interactions of Cu ²⁺ with an amyloidogenic fragment of chicken prion protein. Dalton Transactions, 2017, 46, 7758-7769.	3.3	6
59	DOES hemopressin bind metal ions in vivo?. Dalton Transactions, 2016, 45, 18267-18280.	3.3	5
60	How copper ions and membrane environment influence the structure of the human and chicken tandem repeats domain?. Journal of Inorganic Biochemistry, 2019, 191, 143-153.	3.5	5
61	Dynamic Interplay between Copper Toxicity and Mitochondrial Dysfunction in Alzheimer's Disease. Life, 2021, 11, 386.	2.4	5
62	The role of methylation in the copper(<scp>ii</scp>) coordination properties of a His-containing decapeptide. Dalton Transactions, 2019, 48, 1859-1870.	3.3	2
63	Metal Ion Binding Properties of Proteins Related to Neurodegeneration. , 2006, , 61-87.		1
64	Metal specificity of the Ni(<scp>ii</scp>) and Zn(<scp>ii</scp>) binding sites of the N-terminal and G-domain of <i>E. coli</i> HypB. Dalton Transactions, 2021, 50, 12635-12647.	3.3	1
65	Probing the role of metal ions on reversible peptide–protein interactions by NMR. Spectroscopy, 2004, 18, 251-256.	0.8	0
66	Interactions of metal ions with $\hat{l}\pm$ synuclein and amyloid \hat{l}^2 peptides. , 2014, , .		0
67	Zn(II)-alloferon complexes – Similar sequence, different coordination modes, no antibacterial activity. Journal of Inorganic Biochemistry, 2020, 213, 111275.	3.5	0