
Thierry Ameglio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/918514/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Detection of acoustic events in lavender for measuring xylem vulnerability to embolism and cellular damage. Journal of Experimental Botany, 2022, 73, 3699-3710.	4.8	2
2	Seasonal changes in carbohydrates and water content predict dynamics of frost hardiness in various temperate tree species. Tree Physiology, 2021, 41, 1583-1600.	3.1	11
3	Investigating the role of root exudates in the interaction between oak seedlings and purple moor grass in temperate forest. Forest Ecology and Management, 2021, 491, 119175.	3.2	8
4	Detecting cellular damages in freezing plants: are acoustic emissions useful?. , 2021, , .		1
5	Implications of Urban Land Management on the Cooling Properties of Urban Trees: Citizen Science and Laboratory Analysis. Sustainability, 2021, 13, 13656.	3.2	2
6	Assessing the effects of earlier snow melt-out on alpine shrub growth: The sooner the better?. Ecological Indicators, 2020, 115, 106455.	6.3	38
7	Drought-Induced Mortality: Branch Diameter Variation Reveals a Point of No Recovery in Lavender Species. Plant Physiology, 2020, 183, 1638-1649.	4.8	32
8	Below-ground nitrogen transfer from oak seedlings facilitates Molinia growth: 15N pulse-chase labelling. Plant and Soil, 2020, 449, 343-356.	3.7	7
9	Soil organic matter rather than ectomycorrhizal diversity is related to urban tree health. PLoS ONE, 2019, 14, e0225714.	2.5	8
10	Carry-over benefit of high internal N pool on growth and function of oak seedlings (Quercus) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 382 11
11	Assessing frost damages using dynamic models in walnut trees: exposure rather than vulnerability controls frost risks. Plant, Cell and Environment, 2018, 41, 1008-1021.	5.7	36
12	Dynamic Modeling of Carbon Metabolism During the Dormant Period Accurately Predicts the Changes in Frost Hardiness in Walnut Trees Juglans regia L Frontiers in Plant Science, 2018, 9, 1746.	3.6	28
13	Improved Deschampsia cespitosa growth by nitrogen fertilization jeopardizes Quercus petraea regeneration through intensification of competition. Basic and Applied Ecology, 2018, 31, 21-32.	2.7	7
14	Variation in ectomycorrhizal fungal communities associated with Silver linden (Tilia tomentosa) within and across urban areas. FEMS Microbiology Ecology, 2018, 94, .	2.7	8
15	Vegetation reflectance spectroscopy for biomonitoring of heavy metal pollution in urban soils. Environmental Pollution, 2018, 243, 1912-1922.	7.5	31
16	Foliar optical traits indicate that sealed planting conditions negatively affect urban tree health. Ecological Indicators, 2018, 95, 895-906.	6.3	6
17	Monitoring of Freezing Dynamics in Trees: A Simple Phase Shift Causes Complexity. Plant Physiology, 2017, 173, 2196-2207	4.8	53

18Can phenological models predict tree phenology accurately in the future? The unrevealed hurdle of
endodormancy break. Global Change Biology, 2016, 22, 3444-3460.9.5178

#	Article	IF	CITATIONS
19	Genetics of frost hardiness in Juglans regia L. and relationship with growth and phenology. Tree Genetics and Genomes, 2016, 12, 1.	1.6	18
20	Photosynthesis capacity of Quercus petraea (Matt.) saplings is affected by Molinia caerulea (L.) under high irradiance. Forest Ecology and Management, 2016, 376, 107-117.	3.2	9
21	Cavitation and water fluxes driven by ice water potential in <i>Juglans regia</i> during freeze–thaw cycles. Journal of Experimental Botany, 2016, 67, 739-750.	4.8	40
22	Freezing Stress in Tree Xylem. Progress in Botany Fortschritte Der Botanik, 2016, , 381-414.	0.3	6
23	Effects of environmental factors and management practices on microclimate, winter physiology, and frost resistance in trees. Frontiers in Plant Science, 2015, 6, 259.	3.6	128
24	Characteristics of ultrasonic acoustic emissions from walnut branches during freeze–thaw-induced embolism formation. Journal of Experimental Botany, 2015, 66, 1965-1975.	4.8	17
25	Ultrasonic emissions during ice nucleation and propagation in plant xylem. New Phytologist, 2015, 207, 570-578.	7.3	33
26	Changes in ultrasound velocity and attenuation indicate freezing of xylem sap. Agricultural and Forest Meteorology, 2014, 185, 20-25.	4.8	14
27	Freeze-Thaw Stress: Effects of Temperature on Hydraulic Conductivity and Ultrasonic Activity in Ten Woody Angiosperms. Plant Physiology, 2014, 164, 992-998.	4.8	60
28	Frost hardiness in walnut trees (Juglans regia L.): How to link physiology and modelling?. Tree Physiology, 2013, 33, 1229-1241.	3.1	74
29	Evaluation of the impact of frost resistances on potential altitudinal limit of trees. Tree Physiology, 2013, 33, 891-902.	3.1	69
30	Water stress-induced xylem hydraulic failure is a causal factor of tree mortality in beech and poplar. Annals of Botany, 2013, 112, 1431-1437.	2.9	175
31	Drought and frost resistance of trees: a comparison of four species at different sites and altitudes. Annals of Forest Science, 2012, 69, 325-333.	2.0	42
32	Could rapid diameter changes be facilitated by a variable hydraulic conductance?. Plant, Cell and Environment, 2012, 35, 150-157.	5.7	76
33	Diurnal cycles of embolism formation and repair in petioles of grapevine (Vitis vinifera cv. Chasselas). Journal of Experimental Botany, 2011, 62, 3885-3894.	4.8	135
34	The timing of leaf fall affects cold acclimation by interactions with air temperature through water and carbohydrate contents. Environmental and Experimental Botany, 2011, 72, 351-357.	4.2	72
35	Are budburst dates, dormancy and cold acclimation in walnut trees (Juglans regia L.) under mainly genotypic or environmental control?. International Journal of Biometeorology, 2011, 55, 763-774.	3.0	79
36	Effect of leaf age and position on light-saturated CO ₂ assimilation rate, photosynthetic capacity, and stomatal conductance in rubber trees. Photosynthetica, 2010, 48, 67-78.	1.7	32

#	Article	IF	CITATIONS
37	Limitation of the Cavitron technique by conifer pit aspiration. Journal of Experimental Botany, 2010, 61, 3385-3393.	4.8	30
38	Carbohydrate uptake from xylem vessels and its distribution among stem tissues and buds in walnut (Juglans regia L.). Tree Physiology, 2010, 30, 89-102.	3.1	109
39	A semi-physiological model of cold hardening and dehardening in walnut stem. Tree Physiology, 2010, 30, 1555-1569.	3.1	61
40	Contrasting strategies to cope with chilling stress among clones of a tropical tree, Hevea brasiliensis. Tree Physiology, 2010, 30, 1391-1402.	3.1	30
41	Photosynthetic capacity and temperature responses of photosynthesis of rubber trees (Hevea) Tj ETQq1 1 0.784. 2009, 23, 357-365.	314 rgBT / 1.9	Overlock 10 60
42	Effect of chilling on photosynthesis and antioxidant enzymes in Hevea brasiliensis Muell. Arg Trees - Structure and Function, 2009, 23, 863-874.	1.9	32
43	Carbohydrate storage in wood and bark of rubber trees submitted to different level of C demand induced by latex tapping. Tree Physiology, 2009, 29, 1021-1031.	3.1	58
44	Sucrose (JrSUT1) and hexose (JrHT1 and JrHT2) transporters in walnut xylem parenchyma cells: their potential role in early events of growth resumption. Tree Physiology, 2008, 28, 215-224.	3.1	82
45	Variation in cold hardiness and carbohydrate concentration from dormancy induction to bud burst among provenances of three European oak species. Tree Physiology, 2007, 27, 817-825.	3.1	198
46	Carbohydrate reserves as a competing sink: evidence from tapping rubber trees. Tree Physiology, 2007, 27, 881-889.	3.1	109
47	Spatial activity and expression of plasma membrane H+-ATPase in stem xylem of walnut during dormancy and growth resumption. Tree Physiology, 2007, 27, 1471-1480.	3.1	44
48	Embolism Formation during Freezing in the Wood of Picea abies Â. Plant Physiology, 2007, 143, 60-67.	4.8	82
49	Stomatal regulation and xylem cavitation in Clementine (<i>Citrus clementina</i> Hort) under drought conditions. Journal of Horticultural Science and Biotechnology, 2007, 82, 845-848.	1.9	17
50	JrSUT1, a putative xylem sucrose transporter, could mediate sucrose influx into xylem parenchyma cells and be up-regulated by freeze-thaw cycles over the autumn-winter period in walnut tree (Juglans) Tj ETQq0 C) Շո ջ BT /C)v er lock 10 T
51	Effect of tapping activity on the dynamics of radial growth of Hevea brasiliensis trees. Tree Physiology, 2006, 26, 1579-1587.	3.1	56
52	PARAMETERIZATION OF THE FUNCTIONAL-STRUCTURAL RATP MODEL FOR APPLE TREES: APPLICATION TO SIMULATE PHOTOSYNTHESIS AND TRANSPIRATION OF FRUITING BRANCHES. Acta Horticulturae, 2006, , 77-84.	0.2	3
53	ROLE OF WATER AND CARBON IN TREE STEM DIAMETER VARIATIONS: A DOUBLE-GIRDLING EXPERIMENT. Acta Horticulturae, 2005, , 269-273.	0.2	2
54	WINTER BIOLOGY IN WALNUT TREE: FREEZING TOLERANCE BY COLD ACCLIMATION AND EMBOLISM REPAIR. Acta Horticulturae, 2005, , 241-249.	0.2	5

#	Article	IF	CITATIONS
55	IRRIGATION OF WALNUT TREES MANAGING THE WATER POTENTIAL. Acta Horticulturae, 2005, , 473-477.	0.2	1
56	WALNUT CULTIVAR PERFORMANCE OF COLD RESISTANCE IN SOUTH CENTRAL FRANCE. Acta Horticulturae, 2005, , 281-285.	0.2	8
57	Evaluation of a new centrifuge technique for rapid generation of xylem vulnerability curves. Physiologia Plantarum, 2005, 124, 410-418.	5.2	260
58	Modification of photosynthetic regulation in tomato overexpressing glutathione peroxidase. Biochimica Et Biophysica Acta - General Subjects, 2005, 1724, 108-118.	2.4	29
59	Winter variation in xylem sap pH of walnut trees: involvement of plasma membrane H+-ATPase of vessel-associated cells. Tree Physiology, 2004, 24, 99-105.	3.1	57
60	Testing the branch autonomy theory: a 13C/14C double-labelling experiment on differentially shaded branches. Plant, Cell and Environment, 2004, 27, 1159-1168.	5.7	107
61	Experimental analysis of the role of water and carbon in tree stem diameter variations. Journal of Experimental Botany, 2004, 56, 135-44.	4.8	136
62	Temperature effects on xylem sap osmolarity in walnut trees: evidence for a vitalistic model of winter embolism repair. Tree Physiology, 2004, 24, 785-793.	3.1	122
63	ADAPTATION TO COLD TEMPERATURE AND RESPONSE TO FREEZING IN ROSES. Acta Horticulturae, 2003, , 515-520.	0.2	8
64	GELISTâÂ,,¢: A NEW TOOL FOR TESTING FROST HARDINESS BY STEM DIAMETER VARIATIONS ON WALNUT. Ao Horticulturae, 2003, , 509-514.	ta 0.2	7
65	Unraveling the Effects of Plant Hydraulics on Stomatal Closure during Water Stress in Walnut. Plant Physiology, 2002, 128, 282-290.	4.8	308
66	Winter embolism, mechanisms of xylem hydraulic conductivity recovery and springtime growth patterns in walnut and peach trees. Tree Physiology, 2002, 22, 1211-1220.	3.1	129
67	Hydraulic architecture of trees: main concepts and results. Annals of Forest Science, 2002, 59, 723-752.	2.0	311
68	ESTIMATING TRANSPIRATION OF APPLE TREE BRANCHES FROM LEAF STOMATAL CONDUCTANCE MEASUREMENTS - A FIRST ASSESSMENT OF RATP MODEL ON APPLE TREES. Acta Horticulturae, 2002, , 95-100.	0.2	4
69	Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut. Plant Physiology, 2002, 128, 282-90.	4.8	59
70	Plasma membrane H+-ATPase, succinate and isocitrate dehydrogenases activities of vessel-associated cells in walnut trees. Journal of Plant Physiology, 2001, 158, 1263-1271.	3.5	45
71	Evidence of drought-sensitive periods from flowering to maturity on highbush blueberry. Scientia Horticulturae, 2001, 89, 23-40.	3.6	35
72	Vessel content debate revisited. Trends in Plant Science, 2001, 6, 13.	8.8	14

#	Article	IF	CITATIONS
73	The cohesion theory debate continues. Trends in Plant Science, 2001, 6, 456.	8.8	13
74	CYTOLOGICAL AND IMMUNOLOGICAL APPROACH OF VESSEL-ASSOCIATED CELLS IN UNDERSTANDING THE WINTER SUGAR EXCHANGES, IN WALNUT STEMS. Acta Horticulturae, 2001, , 295-300.	0.2	2
75	IMPLICATION OF THE PLASMALEMMA H+-ATPASE IN SUGAR EXCHANGES BETWEEN VESSELS-ASSOCIATED CELLS AND XYLEM VESSELS, IN WALNUT STEMS. Acta Horticulturae, 2001, , 301-307.	0.2	0
76	SUGARS EXCHANGES BETWEEN VESSELS ASSOCIATED CELLS AND XYLEM VESSELS, IN RELATION WITH THE TEMPERATURE, IN WALNUT. Acta Horticulturae, 2001, , 309-315.	0.2	2
77	SHORT- AND LONG-TERM CARBON ALLOCATION IN YOUNG WALNUT WITH TWO BRANCHES GROWN IN DIFFERENT LIGHT ENVIRONMENTS: A 13C - 14C DOUBLE TRACING EXPERIMENT. Acta Horticulturae, 2001, , 219-226.	0.2	8
78	WATER RELATIONS IN WALNUT DURING WINTER. Acta Horticulturae, 2001, , 239-246.	0.2	4
79	ADAPTATION TO COLD TEMPERATURE AND RESPONSE TO FREEZING IN WALNUT TREE. Acta Horticulturae, 2001, , 247-254.	0.2	10
80	RATP: a model for simulating the spatial distribution of radiation absorption, transpiration and photosynthesis within canopies: application to an isolated tree crown. Plant, Cell and Environment, 2001, 24, 395-406.	5.7	183
81	La cavitation : un mÃf©canisme perturbant la circulation de l'eau chez les vÃf©gÃf©tauxCavitation: a mechanism which perturbs water transfer in plants. Mecanique Et Industries, 2001, 2, 289-298.	0.2	4
82	Stem diameter variations and cold hardiness in walnut trees. Journal of Experimental Botany, 2001, 52, 2135-2142.	4.8	76
83	Mechanisms of xylem recovery from winter embolism in Fagus sylvatica. Tree Physiology, 2001, 21, 27-33.	3.1	115
84	A new validation of the Scholander pressure chamber technique based on stem diameter variations. Journal of Experimental Botany, 2001, 52, 1361-1365.	4.8	59
85	Winter stem xylem pressure in walnut trees: effects of carbohydrates, cooling and freezing. Tree Physiology, 2001, 21, 387-394.	3.1	89
86	Seasonal variation in xylem pressure of walnut trees: root and stem pressures. Tree Physiology, 2001, 21, 1123-1132.	3.1	82
87	A new validation of the Scholander pressure chamber technique based on stem diameter variations. Journal of Experimental Botany, 2001, 52, 1361-1365.	4.8	1
88	WATER RELATIONS OF HIGHBUSH BLUEBERRY UNDER DROUGHT CONDITIONS. Acta Horticulturae, 2000, , 273-278.	0.2	9
89	Cryo-Scanning Electron Microscopy Observations of Vessel Content during Transpiration in Walnut Petioles. Facts or Artifacts?. Plant Physiology, 2000, 124, 1191-1202.	4.8	157
90	EFFECTS OF WATER STRESS ON TRANSPIRATION, RADIAL GROWTH AND YIELD IN HIGHBUSH BLUEBERRY. Acta Horticulturae, 2000, , 923-928.	0.2	5

#	Article	IF	CITATIONS
91	Significance and limits in the use of predawn leaf water potential for tree irrigation. Plant and Soil, 1998, 207, 155-167.	3.7	146
92	WATER RELATIONS AND HYDRAULIC ARCHITECTURE OF PEACH TREES UNDER DROUGHT CONDITIONS. Acta Horticulturae, 1998, , 355-362.	0.2	7
93	EVAPOTRANSPIRATION, WATER STRESS INDICATORS AND SOIL WATER BALANCE IN A PRUNUS PERSICA ORCHARD, IN CENTRAL PORTUGAL. Acta Horticulturae, 1997, , 379-384.	0.2	21
94	RELATIONS BETWEEN RELATIVE TRANSPIRATION AND PREDAWN LEAF WATER POTENTIAL IN DIFFERENT FRUIT TREE SPECIES. Acta Horticulturae, 1997, , 423-430.	0.2	15
95	YIELD AND PHYSIOLOGICAL RESPONSES OF WALNUT TREES IN SEMI-ARID CONDITIONS: APPLICATION TO IRRIGATION SCHEDULING. Acta Horticulturae, 1997, , 273-280.	0.2	19
96	CARBON AND WATER FLUXES IN VEGETATING 3-YEAR-OLD WALNUTS. Acta Horticulturae, 1997, , 153-158.	0.2	0
97	A LIMIT IN THE USE OF PREDAWN LEAF WATER POTENTIAL FOR TREE IRRIGATION. Acta Horticulturae, 1997, , 431-438.	0.2	6
98	Représentativité du potentiel de base sur sols à humidité hétérogène. Agronomy for Sustainable Development, 1996, 16, 493-503.	0.8	15
99	EFFECTS OF WATER STRESS ON DEVELOPMENT GROWTH AND YIELD OF HAZELNUT TREES. Acta Horticulturae, 1994, , 305-314.	0.2	12
100	Drought-induced leaf shedding in walnut: evidence for vulnerability segmentation. Plant, Cell and Environment, 1993, 16, 879-882.	5.7	260
101	Comparaison de 3 méthodes de mesure de la transpiration de jeunes arbres. Agronomy for Sustainable Development, 1993, 13, 751-759.	0.8	5
102	Daily Variations of Stem and Branch Diameter: Short Overview from a Developed Example. , 1992, , 193-204.		11
103	The effects of root temperature on water flux, potential and root resistance in sunflower. Agronomy for Sustainable Development, 1990, 10, 331-340.	0.8	25
104	Microstructural and functional aspects of water transfer under tension in plants. , 0, , .		0
105	Water relations in winter: effect on bud break of walnut tree , 0, , 109-120.		9