
Manickam Bakthadoss

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9184691/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Azomethine ylide cycloaddition of 1,3-dienyl esters: highly regio- and diastereoselective synthesis of functionalized pyrrolidinochromenes. Organic and Biomolecular Chemistry, 2022, 20, 778-782.	2.8	1
2	Ester-directed orthogonal dual C–H activation and ortho aryl C–H alkenylation via distal weak coordination. Chemical Communications, 2022, 58, 1406-1409.	4.1	3
3	Photocatalytic Visible-Light-Induced Nitrogen Insertion via Dual C(sp ³)–H and C(sp ²)–H Bond Functionalization: Access to Privileged Imidazole-based Scaffolds. Organic Letters, 2021, 23, 257-261.	4.6	17
4	Intramolecular [3 + 2] nitrone cycloaddition reaction: highly regio and diastereoselective synthesis of bicyclo[3.2.1]octane scaffolds. Organic and Biomolecular Chemistry, 2020, 18, 9653-9659.	2.8	3
5	Rhodium-Catalyzed Diastereoselective [3 + 2] Cycloaddition of Carbonyl Ylide: An Access to the Core Ring System of Cordigol and Lophirone H. Journal of Organic Chemistry, 2020, 85, 15221-15231.	3.2	8
6	Ruthenium-catalyzed, site-selective C–H activation: access to C5-substituted azaflavanone. RSC Advances, 2020, 10, 31570-31574.	3.6	6
7	Cascade annulation reaction (CAR): highly diastereoselective synthesis of pyranopyrazole scaffolds. RSC Advances, 2020, 10, 19003-19007.	3.6	4
8	Two step, one-pot sequential synthesis of functionalized hybrid polyheterocyclic scaffolds via a solid state melt reaction (SSMR). RSC Advances, 2019, 9, 24314-24318.	3.6	3
9	Ruthenium catalyzed chemo and site-selective C–H amidation of oxobenzoxazine derivatives with sulfonyl azides. New Journal of Chemistry, 2019, 43, 14190-14195.	2.8	10
10	Three Component, Oneâ€Pot Synthesis of Multifunctional Quinolinopyranpyrazoles via Catalystâ€Free Multicomponent Reaction. ChemistrySelect, 2019, 4, 7996-7999.	1.5	7
11	Assembly of Highly Functionalized Chromenopyranpyrazoles via Multicomponent Quadruple Domino Reaction (MCQDR). ChemistrySelect, 2019, 4, 11822-11825.	1.5	1
12	A novel multicomponent quadruple/double quadruple domino reaction: highly efficient synthesis of polyheterocyclic architectures. Organic and Biomolecular Chemistry, 2019, 17, 3884-3893.	2.8	4
13	Regioselective C3–H Trifluoromethylation of 2 <i>H</i> -Indazole under Transition-Metal-Free Photoredox Catalysis. Journal of Organic Chemistry, 2019, 84, 7796-7803.	3.2	62
14	A rearrangement involving a solid-state melt reaction for the synthesis of multifunctional tetrasubstituted olefins. Organic and Biomolecular Chemistry, 2019, 17, 4767-4773.	2.8	4
15	Palladium catalyzed chemo- and site-selective C–H acetoxylation and hydroxylation of oxobenzoxazine derivatives. Organic and Biomolecular Chemistry, 2019, 17, 4465-4469.	2.8	23
16	A distal vinyl shift (DVS) through quadruple domino reaction: synthesis of <i>N</i> -vinyl benzoheterocyclic scaffolds. RSC Advances, 2018, 8, 12152-12156.	3.6	12
17	Triple domino reaction for the synthesis of pyrazole/indoline linked chromenes. Tetrahedron, 2018, 74, 490-496.	1.9	8
18	Solvent and catalyst free ring expansion of indoles: a simple synthesis of highly functionalized benzazepines. Organic and Biomolecular Chemistry, 2018, 16, 8160-8168.	2.8	13

#	Article	IF	CITATIONS
19	Rutheniumâ€Catalyzed Siteâ€selective Enone Carbonyl Directed <i>ortho</i> â€Câ^'H Activation of Aromatics and Heteroaromatics with Alkenes. Advanced Synthesis and Catalysis, 2018, 360, 2650-2658.	4.3	18
20	Synthesis of Highly Functionalized Tricyclic Chromenopyrazole Frameworks <i>via</i> Intramolecular Azomethine Imine 1,3â€Đipolar Cycloaddition (IAIDC). ChemistrySelect, 2018, 3, 6960-6964.	1.5	12
21	Rutheniumâ€Catalyzed, Ketoâ€Directed, Siteâ€5elective C–H Activation of Diverse Chromanones with Alkenes. European Journal of Organic Chemistry, 2017, 2017, 4439-4444.	2.4	20
22	A Direct Cycloaminative Approach to Imidazole Derivatives via Dual C–H Functionalization. Organic Letters, 2017, 19, 5014-5017.	4.6	30
23	Synthesis of a novel methyl(2E)-2-{[N-(2-formylphenyl)(4-methylbenzene) sulfonamido]methyl}-3-(2-methoxyphenyl)prop-2-enoate: Molecular structure, spectral, antimicrobial, molecular docking and DFT computational approaches. Journal of Molecular Structure, 2017, 1127, 457-475.	3.6	10
24	Synthesis, crystal structure analysis, spectral investigations, DFT computations, Biological activities and molecular docking of methyl(2E)-2-{[N-(2-formylphenyl)(4-methylbenzene) sulfonamido]methyl}-3-(4-fluorophenyl)prop-2-enoate, a potential bioactive agent. Journal of Molecular Structure, 2016, 1108, 150-167.	3.6	25
25	One-Pot Synthesis of Benzothiazole-Tethered Chromanones/Coumarins via Claisen Rearrangement Using the Solid State Melt Reaction. Journal of Organic Chemistry, 2016, 81, 3391-3399.	3.2	23
26	Experimental and computational approaches of a novel methyl (2E)-2-{[N-(2-formylphenyl)(4-methylbenzene)sulfonamido]methyl}-3-(4-chlorophenyl)prop-2-enoate: A potential antimicrobial agent and an inhibition of penicillin-binding protein. Journal of Molecular Structure, 2016, 1115, 33-54.	3.6	18
27	Diastereoselective construction of highly functionalized tetrahydroquinolinoisoxazole scaffolds via intramolecular nitrone cycloaddition. Tetrahedron Letters, 2015, 56, 3954-3960.	1.4	11
28	Synthesis of functionalized cyclohexenols via a domino Michael addition–Dieckmann cyclization–isomerization reaction sequence. Tetrahedron Letters, 2015, 56, 3877-3881.	1.4	3
29	Highly regio- and diastereo-selective synthesis of novel tri- and tetra-cyclic perhydroquinoline architectures via an intramolecular [3 + 2] cycloaddition reaction. Organic and Biomolecular Chemistry, 2015, 13, 2870-2874.	2.8	39
30	Synthesis of benzoxepinopyrrolidines/spiropyrrolidines via oxa-Pictet–Spengler and [3+2] cycloaddition reactions. Tetrahedron Letters, 2015, 56, 4980-4983.	1.4	24
31	A facile synthesis of isoxazolo[3,4-a]pyrrolizine and isoxazolo[4,3-c]pyridine derivatives via intramolecular nitrone cycloaddition reaction. RSC Advances, 2015, 5, 67206-67209.	3.6	7
32	Stereoselective construction of functionalized tetracyclic and pentacyclic coumarinopyranpyrazole/pyrimidinedione/coumarin scaffolds using a solid-state melt reaction. Organic and Biomolecular Chemistry, 2015, 13, 5597-5601.	2.8	20
33	Synthesis of highly diversified 1,2,3-triazole derivatives via domino [3 + 2] azide cycloaddition and denitration reaction sequence. RSC Advances, 2015, 5, 93447-93451.	3.6	20
34	A novel protocol for the facile construction of tetrahydroquinoline fused tricyclic frameworks via an intramolecular 1,3-dipolar nitrile oxide cycloaddition reaction. Organic and Biomolecular Chemistry, 2015, 13, 10007-10014.	2.8	12
35	First Synthesis of Bis(di(indolyl)aryl)methanes From Bis(salicylaldehydes). Journal of Heterocyclic Chemistry, 2015, 52, 418-424.	2.6	2
36	A novel synthesis of tetra and pentacyclic quinolinopyran tethered pyrazole/coumarin scaffolds via a solid state melt reaction. RSC Advances, 2014, 4, 11723.	3.6	28

#	Article	IF	CITATIONS
37	Highly stereo and chemoselective synthesis of tetra and pentacyclic frameworks using Solid-State Melt Reaction (SSMR). Tetrahedron Letters, 2014, 55, 1765-1770.	1.4	25
38	Multicomponent Cascade Assembly for Quinolinopyranpyrazole Architectures. European Journal of Organic Chemistry, 2014, 2014, 1505-1513.	2.4	34
39	Highly Regio- and Stereoselective Synthesis of Tetracyclic IndolenoÂɨsoxazolidines via Intramolecular 1,3-Dipolar Nitrone Cycloadditions. Synthesis, 2013, 45, 237-245.	2.3	4
40	Intramolecular 1,3-Dipolar Nitrile Oxide Cycloaddition Using Baylis-Hillman Derivatives: Stereoselective Synthesis of Tricyclic Chromenoisoxazolines. Synthesis, 2012, 44, 755-766.	2.3	11
41	Synthesis of Novel Vicinal Coumarin- and Oxindole-Functionalized Dispiropyrrolidines and Dispiropyrrolizidines via [3+2]-Cycloaddition Reactions. Synthesis, 2012, 44, 793-799.	2.3	25
42	1,3-Dipolar Cycloaddition on Baylis-Hillman Adducts: Novel Synthesis of Pyrrolidines, Spiropyrrolidines, and Spiropyrrolizidines. Synthesis, 2011, 2011, 2136-2146.	2.3	23
43	First Synthesis of Bromo and Chloro Derivatives of Baylis-Hillman Adducts Derived from Nitroolefins: Application towards the Synthesis of a Dendrimer Core. Synthesis, 2011, 2011, 611-618.	2.3	14
44	First Friedel-Crafts Reaction of the Baylis-Hillman Adducts Derived from Nitroolefins: Application towards Synthesis of Pyrrolidines and Spiropyrrolidines. Synlett, 2011, 2011, 1296-1302.	1.8	15
45	Highly Stereoselective Synthesis of Tricyclic Chromenoisoxazolidines by Intramolecular 1,3â€Dipolar Cycloadditions. European Journal of Organic Chemistry, 2010, 2010, 5825-5830.	2.4	37
46	Novel Regio- and Stereoselective Synthesis of Functionalized 3-Spiropyrrolidines and 3-Spiropyrrolizidines Using the Baylis-Hillman Adducts Derived from Nitroolefins. Synlett, 2009, 2009, 1014-1018.	1.8	29
47	Solid-State Melt Reaction for the Domino Process: Highly Efficient Synthesis of Fused Tetracyclic Chromenopyran Pyrimidinediones Using Baylisâ^'Hillman Derivatives. Organic Letters, 2009, 11, 4466-4469.	4.6	62
48	Highly regio- and stereoselective synthesis of tricyclic frameworks using Baylis–Hillman derivatives. Tetrahedron Letters, 2008, 49, 820-823.	1.4	34
49	TANDEM CONSTRUCTION OF CARBON–CARBON AND CARBON–OXYGEN BONDS IN THE BAYLIS-HILLMAN CHEMISTRY: SYNTHESIS OF FUNCTIONALIZEDdI-BIS-ALLYL ETHERS. Synthetic Communications, 2002, 32, 689-697.	2.1	17
50	(1R, 2R)-2-nitroxycyclohexan-1-ol : First example of a cyclohexyl based chiral auxiliary with nitroxy function as diastereoface discriminating group. Tetrahedron: Asymmetry, 1996, 7, 997-1000.	1.8	21