Darko Zibar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9183892/publications.pdf

Version: 2024-02-01

191	4,165	31 h-index	58
papers	citations		g-index
191	191	191	2871
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Spectral and Spatial Power Evolution Design With Machine Learning-Enabled Raman Amplification. Journal of Lightwave Technology, 2022, 40, 3546-3556.	4.6	6
2	End-to-end learning for fiber-optic communication systems. , 2022, , 115-139.		3
3	End-to-End Learning of a Constellation Shape Robust to Channel Condition Uncertainties. Journal of Lightwave Technology, 2022, 40, 3316-3324.	4.6	17
4	Machine learning applied to inverse systems design. , 2022, , .		3
5	Digital synchronization for continuous-variable quantum key distribution. Quantum Science and Technology, 2022, 7, 045006.	5.8	8
6	Multi–Band Programmable Gain Raman Amplifier. Journal of Lightwave Technology, 2021, 39, 429-438.	4.6	36
7	End-to-End Optimization of Coherent Optical Communications Over the Split-Step Fourier Method Guided by the Nonlinear Fourier Transform Theory. Journal of Lightwave Technology, 2021, 39, 418-428.	4.6	35
8	Machine learning aided carrier recovery in continuous-variable quantum key distribution. Npj Quantum Information, $2021,7,\ldots$	6.7	24
9	Experimental Characterization of Raman Amplifier Optimization Through Inverse System Design. Journal of Lightwave Technology, 2021, 39, 1162-1170.	4.6	17
10	Simultaneous gain profile design and noise figure prediction for Raman amplifiers using machine learning. Optics Letters, 2021, 46, 1157.	3.3	8
11	Experimental Investigation of Optoelectronic Receiver With Reservoir Computing in Short Reach Optical Fiber Communications. Journal of Lightwave Technology, 2021, 39, 2460-2467.	4.6	24
12	Inverse design of a Raman amplifier in frequency and distance domains using convolutional neural networks. Optics Letters, 2021, 46, 2650.	3.3	7
13	Deep learning in photonics: introduction. Photonics Research, 2021, 9, DLP1.	7.0	10
14	Optimization of frequency combs spectral-flatness using evolutionary algorithm. Optics Express, 2021, 29, 23447.	3.4	6
15	Approaching optimum phase measurement in the presence of amplifier noise. Optica, 2021, 8, 1262.	9.3	7
16	Gradient-Free Training of Autoencoders for Non-Differentiable Communication Channels. Journal of Lightwave Technology, 2021, 39, 6381-6391.	4.6	16
17	Transfer learning for temperature predictions in sensors employing fibre Bragg grating arrays. , 2021, ,		O
18	Inverse System Design Using Machine Learning: The Raman Amplifier Case. Journal of Lightwave Technology, 2020, 38, 736-753.	4.6	63

#	Article	IF	Citations
19	Optimization of Fiber Optics Communication Systems via End-to-End Learning. , 2020, , .		1
20	Introducing Load Aware Neural Networks for Accurate Predictions of Raman Amplifiers. Journal of Lightwave Technology, 2020, 38, 6481-6491.	4.6	23
21	Simultaneous Temperature Estimation of Multiple Gratings Using a Multi-Layer Neural Network. IEEE Photonics Technology Letters, 2020, 32, 1257-1260.	2.5	8
22	Experimental Demonstration of Nonlinear Frequency Division Multiplexing Transmission With Neural Network Receiver. Journal of Lightwave Technology, 2020, 38, 6465-6473.	4.6	17
23	Reservoir-Computing Based Equalization With Optical Pre-Processing for Short-Reach Optical Transmission. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-12.	2.9	17
24	Model-Aided Deep Learning Method for Path Loss Prediction in Mobile Communication Systems at 2.6 GHz. IEEE Access, 2020, 8, 7925-7936.	4.2	111
25	End-to-end optimized nonlinear Fourier transform-based coherent communications. , 2020, , .		6
26	Bayesian filtering framework for noise characterization of frequency combs. Optics Express, 2020, 28, 13949.	3.4	10
27	Experimental demonstration of arbitrary Raman gain–profile designs using machine learning. , 2020, , .		6
28	Highly-Sensitive Phase and Frequency Noise Measurement Technique Using Bayesian Filtering. IEEE Photonics Technology Letters, 2019, 31, 1866-1869.	2.5	4
29	Impact of Transmitter Phase Noise on NFDM Transmission With Discrete Spectral Modulation. IEEE Photonics Technology Letters, 2019, 31, 1767-1770.	2.5	8
30	Tunable Optoelectronic Chromatic Dispersion Compensation Based on Machine Learning for Short-Reach Transmission. Applied Sciences (Switzerland), 2019, 9, 4332.	2.5	13
31	Machine Learning Assisted Fiber Bragg Grating-Based Temperature Sensing. IEEE Photonics Technology Letters, 2019, 31, 939-942.	2.5	31
32	Dual-Polarization NFDM Transmission With Continuous and Discrete Spectral Modulation. Journal of Lightwave Technology, 2019, 37, 2335-2343.	4.6	41
33	An Overview on Application of Machine Learning Techniques in Optical Networks. IEEE Communications Surveys and Tutorials, 2019, 21, 1383-1408.	39.4	374
34	Low-complexity carrier phase recovery based on principal component analysis for square-QAM modulation formats. Optics Express, 2019, 27, 15617.	3.4	30
35	Impact of Laser Phase Noise on Nonlinear Frequency Division Multiplexing Systems. , 2019, , .		1
36	0.4 THz Photonic-Wireless Link With 106 Gb/s Single Channel Bitrate. Journal of Lightwave Technology, 2018, 36, 610-616.	4.6	113

#	Article	IF	CITATIONS
37	Time-Domain Neural Network Receiver for Nonlinear Frequency Division Multiplexed Systems. IEEE Photonics Technology Letters, 2018, 30, 1079-1082.	2.5	49
38	Optimization of DP-M-QAM Transmitter Using Cooperative Coevolutionary Genetic Algorithm. Journal of Lightwave Technology, 2018, 36, 2450-2462.	4.6	29
39	Drive Test Minimization Using Deep Learning with Bayesian Approximation. , 2018, , .		13
40	Introduction to the JOCN Special Issue on Machine Learning and Data Analytics for Optical Communications and Networking. Journal of Optical Communications and Networking, 2018, 10, ML1.	4.8	2
41	Deep Learning of Geometric Constellation Shaping Including Fiber Nonlinearities. , 2018, , .		58
42	Dual-Polarization NFDM Transmission Using Distributed Raman Amplification and NFT-Domain Equalization. IEEE Photonics Technology Letters, 2018, 30, 1983-1986.	2.5	33
43	Model-Based Position and Reflectivity Estimation of Fiber Bragg Grating Sensor Arrays. Sensors, 2018, 18, 2268.	3 . 8	3
44	Single-source chip-based frequency comb enabling extreme parallel data transmission. Nature Photonics, 2018, 12, 469-473.	31.4	165
45	Dual-polarization nonlinear Fourier transform-based optical communication system. Optica, 2018, 5, 263.	9.3	111
46	Clock Recovery Challenges in DSP-Based Coherent Single-Mode and Multi-Mode Optical Systems. Future Internet, 2018, 10, 59.	3.8	2
47	Machine learning assisted Fibre Bragg Grating based temperature sensing, 2018, , .		2
48	100 GHz Externally Modulated Laser for Optical Interconnects. Journal of Lightwave Technology, 2017, 35, 1174-1179.	4.6	64
49	Nonlinear Phase Noise Compensation in Experimental WDM Systems With 256QAM. Journal of Lightwave Technology, 2017, 35, 1438-1443.	4.6	18
50	Experimental Study of 1.55- \$mu\$ m EML-Based Optical IM/DD PAM-4/8 Short Reach Systems. IEEE Photonics Technology Letters, 2017, 29, 523-526.	2.5	19
51	Wavelength conversion of QAM signals in a low loss CMOS compatible spiral waveguide. APL Photonics, 2017, 2, 046105.	5.7	17
52	Compact silicon multimode waveguide spectrometer with enhanced bandwidth. Scientific Reports, 2017, 7, 43454.	3.3	32
53	Machine learning under the spotlight. Nature Photonics, 2017, 11, 749-751.	31.4	44
54	Low-complexity BCH codes with optimized interleavers for DQPSK systems with laser phase noise. Photonic Network Communications, 2017, 33, 328-333.	2.7	0

#	Article	IF	CITATIONS
55	Characterization and Optimization of a High-Efficiency AlGaAs-On-Insulator-Based Wavelength Converter for 64- and 256-QAM Signals. Journal of Lightwave Technology, 2017, 35, 3750-3757.	4.6	41
56	Machine Learning Techniques for Optical Performance Monitoring From Directly Detected PDM-QAM Signals. Journal of Lightwave Technology, 2017, 35, 868-875.	4.6	133
57	BCH Codes for Coherent Star DQAM Systems with Laser Phase Noise. Journal of Optical Communications, 2017, 38, .	4.7	0
58	Low-complexity Joint Sub-carrier Phase Noise Compensation for Digital Multi-carrier Systems., 2017,,.		5
59	Time Skew Estimator for Dual-Polarization QAM Transmitters. , 2017, , .		5
60	Prediction of Second-Order Moments of Inter-Channel Interference with Principal Component Analysis and Neural Networks. , 2017, , .		1
61	Single Channel 106 Gbit/s 16QAM Wireless Transmission in the 0.4 THz Band., 2017,,.		18
62	Experimental analysis of pilot-based equalization for probabilistically shaped WDM systems with $256 QAM/1024 QAM.,2017,,.$		14
63	Performance Evaluation of Clock Recovery for Coherent Mode Division Multiplexed Systems., 2017,,.		0
64	Effective Linewidth of Semiconductor Lasers for Coherent Optical Data Links. Photonics, 2016, 3, 39.	2.0	6
65	Two-Stage n-PSK Partitioning Carrier Phase Recovery Scheme for Circular mQAM Coherent Optical Systems. Photonics, 2016, 3, 37.	2.0	4
66	Performance emulation and parameter estimation for nonlinear fibre-optic links., 2016,,.		3
67	Ultrahigh-speed Si-integrated on-chip laser with tailored dynamic characteristics. Scientific Reports, 2016, 6, 38801.	3.3	14
68	Constellation Shaping for WDM Systems Using 256QAM/1024QAM With Probabilistic Optimization. Journal of Lightwave Technology, 2016, 34, 5146-5156.	4.6	105
69	Markov chain Monte Carlo methods for statistical analysis of RF photonic devices. Optics Express, 2016, 24, 2084.	3.4	1
70	400-GHz Wireless Transmission of 60-Gb/s Nyquist-QPSK Signals Using UTC-PD and Heterodyne Mixer. IEEE Transactions on Terahertz Science and Technology, 2016, 6, 765-770.	3.1	49
71	Widely Linear Equalization for IQ Imbalance and Skew Compensation in Optical Coherent Receivers. Journal of Lightwave Technology, 2016, 34, 3577-3586.	4.6	85
72	Machine Learning Techniques in Optical Communication. Journal of Lightwave Technology, 2016, 34, 1442-1452.	4.6	164

#	Article	IF	CITATIONS
73	Novel Coherent Optical OFDM-Based Transponder for Optical Slot Switched Networks. Journal of Lightwave Technology, 2016, 34, 1851-1858.	4.6	6
74	Combined Optical and Electrical Spectrum Shaping for High-Baud-Rate Nyquist-WDM Transceivers. IEEE Photonics Journal, 2016, 8, 1-11.	2.0	10
75	High Speed PAM-8 Optical Interconnects with Digital Equalization based on Neural Network. , 2016, , .		29
76	Single-Source AlGaAs Frequency Comb Transmitter for 661 Tbit/s Data Transmission in a 30-core Fiber. , 2016, , .		15
77	Joint IQ Skew and Chromatic Dispersion Estimation for Coherent Optical Communication Receivers. , 2016, , .		5
78	Machine Learning Techniques Applied to System Characterization and Equalization. , 2016, , .		3
79	Low-penalty up to 16-QAM wavelength conversion in a low loss CMOS compatible spiral waveguide. , 2016, , .		1
80	Wavelength Conversion of QPSK and 16-QAM Coherent Signals in a CMOS Compatible Spiral Waveguide. , 2016, , .		0
81	Performance of Multi-Channel DBP with Long-haul Frequency-Referenced Transmission. , 2016, , .		1
82	Tolerance of Continuous NFT Spectrum to Optical Fiber Channel Impairments., 2016,,.		0
83	Rate Equation-Based Phase Recovery for Semiconductor Laser Coherent Transmitters. , 2015, , .		3
84	Highly Sensitive Photonic Crystal Cavity Laser Noise Measurements using Bayesian Filtering., 2015,,.		1
85	Stokes Space in Direct-Detection Data Transmission Systems. , 2015, , .		O
86	Impairment mitigation in superchannels with digital backpropagation and MLSD. Optics Express, 2015, 23, 29493.	3.4	2
87	Interleavers and BCH Codes for Coherent DQPSK Systems With Laser Phase Noise. IEEE Photonics Technology Letters, 2015, 27, 685-688.	2.5	3
88	Phase noise tolerant carrier recovery scheme for 28 Gbaud circular 16QAM., 2015,,.		1
89	Laser Rate Equation-Based Filtering for Carrier Recovery in Characterization and Communication. Journal of Lightwave Technology, 2015, 33, 3271-3279.	4.6	12
90	Coherent optical orthogonal frequency-division multiplexing for optical slot switched intra-datacenters networks. , $2015, \ldots$		1

#	Article	IF	Citations
91	Quaternary Polarization-Multiplexed Subsystem for High-Capacity IM/DD Optical Data Links. Journal of Lightwave Technology, 2015, 33, 1408-1416.	4.6	17
92	60 Gbit/s 400 GHz wireless transmission. , 2015, , .		26
93	Application of Machine Learning Techniques for Amplitude and Phase Noise Characterization. Journal of Lightwave Technology, 2015, 33, 1333-1343.	4.6	43
94	Reconfigurable Forward Error Correction Decoder for Beyond 100 Gbps High Speed Optical Links. IEEE Communications Letters, 2015, 19, 119-122.	4.1	4
95	Focusing Over Optical Fiber Using Time Reversal. IEEE Photonics Technology Letters, 2015, 27, 631-634.	2.5	8
96	Digital signal processing approaches for semiconductor phase noise tolerant coherent transmission systems. Proceedings of SPIE, 2015, , .	0.8	1
97	Laser characterization with advanced digital signal processing. , 2015, , .		1
98	Carrier Recovery Techniques for Semiconductor Laser Frequency Noise for 28 Gbd DP-16QAM., 2015,,.		6
99	Single-Step Emulation of Nonlinear Fiber-Optic Link with Gaussian Mixture Model. , 2015, , .		1
100	Nonlinear Compensation with Modified Adaptive Digital Backpropagation in Flexigrid Networks. , 2015, , .		2
101	Machine learning concepts in coherent optical communication systems. , 2014, , .		5
102	Impact of Carrier Induced Frequency Noise from the Transmitter Laser on 28 and 56 Gbaud DP-QPSK Metro Links. , 2014, , .		3
103	Robust cognitive-GN BER estimator for dynamic WDM networks. , 2014, , .		5
104	Novel BCH Code Design for Mitigation of Phase Noise Induced Cycle Slips in DQPSK Systems. , 2014, , .		2
105	Advanced Modulation Formats in Cognitive Optical Networks: EU project CHRON Demonstration. , 2014, , .		4
106	First Experimental Demonstration of Coherent CAP for 300-Gb/s Metropolitan Optical Networks. , 2014, , .		15
107	Experimental evaluation of prefiltering for 56Gbaud DP-QPSK signal transmission in 75GHz WDM grid. Optical Fiber Technology, 2014, 20, 39-43.	2.7	1
108	VCSEL Based Coherent PONs. Journal of Lightwave Technology, 2014, 32, 1423-1433.	4.6	23

#	Article	IF	CITATIONS
109	Joint Iterative Carrier Synchronization and Signal Detection Employing Expectation Maximization. Journal of Lightwave Technology, 2014, 32, 1608-1615.	4.6	12
110	Turbo Equalization for Digital Coherent Receivers. Journal of Lightwave Technology, 2014, 32, 275-284.	4.6	8
111	Turbo Equalization Techniques Toward Robust PDM 16-QAM Optical Fiber Transmission. Journal of Optical Communications and Networking, 2014, 6, 204.	4.8	2
112	Dimensioning BCH Codes for Coherent DQPSK Systems With Laser Phase Noise and Cycle Slips. Journal of Lightwave Technology, 2014, 32, 4048-4052.	4.6	9
113	Constellation Shaping for Fiber-Optic Channels With QAM and High Spectral Efficiency. IEEE Photonics Technology Letters, 2014, 26, 2407-2410.	2.5	109
114	Capacity-Approaching Superposition Coding for Optical Fiber Links. Journal of Lightwave Technology, 2014, 32, 2960-2972.	4.6	3
115	Experimental demonstration of the maximum likelihood-based chromatic dispersion estimator for coherent receivers. Optical Fiber Technology, 2014, 20, 158-162.	2.7	3
116	Anatomy of a Digital Coherent Receiver. IEICE Transactions on Communications, 2014, E97.B, 1528-1536.	0.7	16
117	Capacity and shaping in coherent fiber-optic links. , 2014, , .		0
118	DSP-based focusing over optical fiber using time reversal. , 2014, , .		1
119	Reconfigurable digital coherent receiver for metro-access networks supporting mixed modulation formats and bit-rates. Optical Fiber Technology, 2013, 19, 638-642.	2.7	O
119 120	Reconfigurable digital coherent receiver for metro-access networks supporting mixed modulation formats and bit-rates. Optical Fiber Technology, 2013, 19, 638-642. Counteracting 16-QAM Optical Fiber Transmission Impairments With Iterative Turbo Equalization. IEEE Photonics Technology Letters, 2013, 25, 2097-2100.	2.7	0
	formats and bit-rates. Optical Fiber Technology, 2013, 19, 638-642. Counteracting 16-QAM Optical Fiber Transmission Impairments With Iterative Turbo Equalization. IEEE		
120	formats and bit-rates. Optical Fiber Technology, 2013, 19, 638-642. Counteracting 16-QAM Optical Fiber Transmission Impairments With Iterative Turbo Equalization. IEEE Photonics Technology Letters, 2013, 25, 2097-2100. Advanced Modulation Techniques for High-Performance Computing Optical Interconnects. IEEE	2.5	1
120	formats and bit-rates. Optical Fiber Technology, 2013, 19, 638-642. Counteracting 16-QAM Optical Fiber Transmission Impairments With Iterative Turbo Equalization. IEEE Photonics Technology Letters, 2013, 25, 2097-2100. Advanced Modulation Techniques for High-Performance Computing Optical Interconnects. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 3700614-3700614. Stokes Space-Based Optical Modulation Format Recognition for Digital Coherent Receivers. IEEE	2.5	1
120 121 122	Counteracting 16-QAM Optical Fiber Transmission Impairments With Iterative Turbo Equalization. IEEE Photonics Technology Letters, 2013, 25, 2097-2100. Advanced Modulation Techniques for High-Performance Computing Optical Interconnects. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 3700614-3700614. Stokes Space-Based Optical Modulation Format Recognition for Digital Coherent Receivers. IEEE Photonics Technology Letters, 2013, 25, 2129-2132.	2.5	1 5 77
120 121 122 123	Counteracting 16-QAM Optical Fiber Transmission Impairments With Iterative Turbo Equalization. IEEE Photonics Technology Letters, 2013, 25, 2097-2100. Advanced Modulation Techniques for High-Performance Computing Optical Interconnects. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 3700614-3700614. Stokes Space-Based Optical Modulation Format Recognition for Digital Coherent Receivers. IEEE Photonics Technology Letters, 2013, 25, 2129-2132. Optical Modulation Format Recognition in Stokes Space for Digital Coherent Receivers., 2013, , Demonstration of EDFA Cognitive Gain Control via GMPLS for Mixed Modulation Formats in	2.5	1 5 77

#	Article	lF	Citations
127	100-Gbps hybrid optical fiber-wireless transmission. , 2013, , .		2
128	Experimental Study on OSNR Requirements for Spectrum-Flexible Optical Networks [Invited]. Journal of Optical Communications and Networking, 2012, 4, B85.	4.8	9
129	Experimental demonstration of a cognitive quality of transmission estimator for optical communication systems. Optics Express, 2012, 20, B64.	3.4	18
130	Nonlinear impairment compensation using expectation maximization for dispersion managed and unmanaged PDM 16-QAM transmission. Optics Express, 2012, 20, B181.	3.4	80
131	2x2 MIMO-OFDM Gigabit fiber-wireless access system based on polarization division multiplexed WDM-PON. Optics Express, 2012, 20, 4369.	3.4	31
132	High phase noise tolerant pilot-tone-aided DP-QPSK optical communication systems. Optics Express, 2012, 20, 19990.	3.4	15
133	Nonlinear Impairment Compensation Using Expectation Maximization for PDM 16-QAM Systems. , 2012, , .		0
134	High-Capacity 60 GHz and 75–110 GHz Band Links Employing All-Optical OFDM Generation and Digital Coherent Detection. Journal of Lightwave Technology, 2012, 30, 147-155.	4.6	76
135	25 Gbit/s QPSK Hybrid Fiber-Wireless Transmission in the W-Band (75–110 GHz) With Remote Antenna Unit for In-Building Wireless Networks. IEEE Photonics Journal, 2012, 4, 691-698.	2.0	67
136	Impact of Gain Saturation on the Parametric Amplification of 16-QAM Signals. , 2012, , .		3
137	Experimental Demonstration of a Cognitive Quality of Transmission Estimator for Optical Communication Systems. , 2012, , .		2
138	Cognitive Heterogeneous Reconfigurable Optical Networks (CHRON): Enabling technologies and techniques. , $2011, \ldots$		12
139	Performance Evaluation of Digital Coherent Receivers for Phase-Modulated Radio-Over-Fiber Links. Journal of Lightwave Technology, 2011, 29, 3282-3292.	4.6	27
140	Hybrid optical fibre-wireless links at the 75 \pm x2013;110 GHz band supporting 100 Gbps transmission capacities. , 2011, , .		6
141	100 Gbit/s hybrid optical fiber-wireless link in the W-band (75–110 GHz). Optics Express, 2011, 19, 24944.	3.4	260
142	Digital non-linear equalization for flexible capacity ultradense WDM channels for metro core networking. Optics Express, 2011, 19, B270.	3.4	1
143	Experimental investigation and digital compensation of DGD for 112 Gb/s PDM-QPSK clock recovery. Optics Express, 2011, 19, B429.	3.4	8
144	Experimental demonstration of adaptive digital monitoring and compensation of chromatic dispersion for coherent DP-QPSK receiver. Optics Express, 2011, 19, B728.	3.4	20

#	Article	IF	CITATIONS
145	High-Capacity Wireless Signal Generation and Demodulation in 75- to 110-GHz Band Employing All-Optical OFDM. IEEE Photonics Technology Letters, 2011, 23, 810-812.	2.5	152
146	Reconfigurable Digital Coherent Receiver for Metro-Access Networks Supporting Mixed Modulation Formats and Bit-rates. , 2011, , .		6
147	Re-configurable digital receiver for optically envelope detected half cycle BPSK and MSK radio-on-fiber signals. Optical Fiber Technology, 2011, 17, 59-63.	2.7	2
148	Photonic downconversion for coherent phase-modulated radio-over-fiber links using free-running local oscillator. Optical Fiber Technology, 2011, 17, 263-266.	2.7	1
149	Reconfigurable digital receiver for 8PSK subcarrier multiplexed and 16QAM single carrier phase-modulated radio over fiber links. Microwave and Optical Technology Letters, 2011, 53, 1015-1018.	1.4	1
150	Radio over fiber link with adaptive order nâ€QAM optical phase modulated OFDM and digital coherent detection. Microwave and Optical Technology Letters, 2011, 53, 2245-2247.	1.4	1
151	Vertical-cavity surface-emitting laser based digital coherent detection for multigigabit long reach passive optical links. Microwave and Optical Technology Letters, 2011, 53, 2462-2464.	1.4	1
152	Coherent detection passive optical access network enabling converged delivery of broadcast and dedicated broadband services. Optical Fiber Technology, 2011, 17, 1-6.	2.7	2
153	Coherent Detection for 1550 nm, 5 Gbit/s VCSEL Based 40 km Bidirectional PON Transmission. , 2011, , .		5
154	1.2 Tb/s ultredense WDM long reach and spectral efficiency access link with digital detection., 2011,,.		0
155	Channel measurements for a optical fiber-wireless transmission system in the 75& \pm x2013;110 GHz band., 2011,,.		3
156	Robust BPSK Impulse Radio UWB-over-Fiber Systems Using Optical Phase Modulation., 2011,,.		3
157	Carrier Recovery and Equalization for Photonic-Wireless Links with Capacities up to 40 Gb/s in 75-110 GHz Band. , 2011 , , .		7
158	Radio Frequency Transparent Demodulation for Broadband Wireless Links., 2010,,.		8
159	Multi-gigabit wireless over fibre links employing photonics downconversion and digital coherent detection. , 2010, , .		1
160	16 Gb/s QPSK Wireless-over-Fibre link in 75 \pm x2013;110 GHz band employing optical heterodyne generation and coherent detection. , 2010, , .		9
161	Cognitive digital receiver for burst mode phase modulated radio over fiber links. , 2010, , .		24
162	Digital coherent detection of multi-gigabit 40â€GHz carrier frequency radio-over-fibre signals using photonic downconversion. Electronics Letters, 2010, 46, 57.	1.0	9

#	Article	IF	Citations
163	Experimental 2.5-Gb/s QPSK WDM Phase-Modulated Radio-Over-Fiber Link With Digital Demodulation by a \$K\$-Means Algorithm. IEEE Photonics Technology Letters, 2010, 22, 335-337.	2.5	29
164	Radio-Frequency Transparent Demodulation for Broadband Hybrid Wireless-Optical Links. IEEE Photonics Technology Letters, 2010, 22, 784-786.	2.5	15
165	100-GHz Wireless-Over-Fiber Links With Up to 16-Gb/s QPSK Modulation Using Optical Heterodyne Generation and Digital Coherent Detection. IEEE Photonics Technology Letters, 2010, , .	2.5	19
166	Engineering rules for chromatic dispersion compensation in digital receivers for optical coherent PolMux QPSK links. , 2010, , .		1
167	All-VCSEL based digital coherent detection link for multi Gbit/s WDM passive optical networks. Optics Express, 2010, 18, 24969.	3.4	16
168	Up to 40 Gb/s wireless signal generation and demodulation in 75& $\#x2013;110$ GHz band using photonic techniques. , 2010, , .		11
169	Hybrid optical/wireless link with software defined receiver for simultaneous baseband and wireless signal detection. , 2010, , .		0
170	Converged wireline and wireless signal transport over optical fibre access links. , 2009, , .		2
171	All-Optical 160-Gbit/s Retiming System Using Fiber Grating Based Pulse Shaping Technology. Journal of Lightwave Technology, 2009, 27, 1135-1141.	4.6	12
172	Converged Wireline and Wireless Access Over a 78-km Deployed Fiber Long-Reach WDM PON. IEEE Photonics Technology Letters, 2009, 21, 1274-1276.	2.5	45
173	Digital coherent receiver employing photonic downconversion for phase modulated radio-over-fibre links. , 2009, , .		2
174	Converged Wireless and Wireline Access System Based on Optical Phase Modulation for Both Radio-Over-Fiber and Baseband Signals. IEEE Photonics Technology Letters, 2008, 20, 1814-1816.	2.5	16
175	Phase-Locked Coherent Demodulator With Feedback and Sampling for Optically Phase-Modulated Microwave Links. Journal of Lightwave Technology, 2008, 26, 2460-2475.	4.6	12
176	DSP based Coherent Receiver for Phase-Modulated Radio-over-Fiber Optical Links., 2008,,.		1
177	Experimental demonstration of a digital maximum likelihood based feedforward carrier recovery scheme for phase-modulated radio-over-fibre links. , 2008, , .		0
178	Optical Phase Demodulation of a 10GHz RF Signal using Optical Sampling. , 2008, , .		10
179	Analysis of Sampled Optical Phase-Lock Loops. , 2007, , .		3
180	Dynamic range enhancement of a novel phase-locked coherent optical phase demodulator. Optics Express, 2007, 15, 33.	3.4	13

#	Article	IF	Citations
181	Phase Noise Analysis of Clock Recovery Based on an Optoelectronic Phase-Locked Loop. Journal of Lightwave Technology, 2007, 25, 901-914.	4.6	6
182	Linear Coherent Receiver based on a Broadband and Sampling Optical Phase-Locked Loop., 2007,,.		19
183	Novel Optical Phase Demodulator Based on a Sampling Phase-Locked Loop. IEEE Photonics Technology Letters, 2007, 19, 686-688.	2.5	17
184	Highly Linear Coherent Receiver With Feedback. IEEE Photonics Technology Letters, 2007, 19, 940-942.	2.5	44
185	The Effect of Timing Jitter on a 160-Gb/s Demultiplexer. IEEE Photonics Technology Letters, 2007, 19, 957-959.	2.5	3
186	All-Optical Coherent Receiver with Feedback and Sampling. , 2006, , .		7
187	Investigation of a Novel Optical Phase Demodulator Based on a Sampling Phase-Locked Loop. , 2006, , .		7
188	Solutions for Ultra-High Speed Optical Wavelength Conversion and Clock Recovery. , 2006, , .		1
189	Reduction of timing jitter by clock recovery based on an optical phase-locked loop. , 2006, , .		O
190	SFDR Improvement of a Coherent Receiver Using Feedback. , 2006, , .		22
191	Time-Domain Analysis of a Novel Phase-Locked Coherent Optical Demodulator. , 2006, , .		6