Valerie Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9183776/publications.pdf

Version: 2024-02-01

		201674	254184
42	3,900	27	43
papers	citations	h-index	g-index
F-0	5 2	50	2200
53	53	53	3289
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Redefining the Progression of Lineage Segregations during Mammalian Embryogenesis by Clonal Analysis. Developmental Cell, 2009, 17, 365-376.	7.0	372
2	In Vitro Generation of Neuromesodermal Progenitors Reveals Distinct Roles for Wnt Signalling in the Specification of Spinal Cord and Paraxial Mesoderm Identity. PLoS Biology, 2014, 12, e1001937.	5.6	311
3	Stem cells, signals and vertebrate body axis extension. Development (Cambridge), 2009, 136, 1591-1604.	2.5	259
4	Distinct Wnt-driven primitive streak-like populations reflect <i>in vivo</i> lineage precursors. Development (Cambridge), 2014, 141, 1209-1221.	2.5	215
5	A Gene Regulatory Network Balances Neural and Mesoderm Specification during Vertebrate Trunk Developmental Cell, 2017, 41, 243-261.e7.	7.0	210
6	Two distinct sources for a population of maturing axial progenitors. Development (Cambridge), 2007, 134, 2829-2840.	2.5	195
7	Stem cells, signals and vertebrate body axis extension. Development (Cambridge), 2009, 136, 2133-2133.	2.5	191
8	Axial progenitors with extensive potency are localised to the mouse chordoneural hinge. Development (Cambridge), 2002, 129, 4855-4866.	2.5	186
9	Cell fate and morphogenetic movement in the late mouse primitive streak. Mechanisms of Development, 1996, 55, 79-89.	1.7	172
10	Position-dependent plasticity of distinct progenitor types in the primitive streak. ELife, 2016, 5, e10042.	6.0	169
11	InÂVivo Differentiation Potential of Epiblast Stem Cells Revealed by Chimeric Embryo Formation. Cell Reports, 2012, 2, 1571-1578.	6.4	161
12	The developmental dismantling of pluripotency is reversed by ectopic Oct4 expression. Development (Cambridge), 2012, 139, 2288-2298.	2.5	156
13	Localised axial progenitor cell populations in the avian tail bud are not committed to a posterior Hox identity. Development (Cambridge), 2008, 135, 2289-2299.	2.5	152
14	Somatic activating mutations in <i>Pik3ca</i> cause sporadic venous malformations in mice and humans. Science Translational Medicine, 2016, 8, 332ra43.	12.4	138
15	Essential Alterations of Heparan Sulfate During the Differentiation of Embryonic Stem Cells to Sox1-Enhanced Green Fluorescent Protein-Expressing Neural Progenitor Cells. Stem Cells, 2007, 25, 1913-1923.	3.2	126
16	Axial progenitors with extensive potency are localised to the mouse chordoneural hinge. Development (Cambridge), 2002, 129, 4855-66.	2.5	84
17	Human axial progenitors generate trunk neural crest cells in vitro. ELife, 2018, 7, .	6.0	81
18	Expression of T Protein in the Primitive Streak Is Necessary and Sufficient for Posterior Mesoderm Movement and Somite Differentiation. Developmental Biology, 1997, 192, 45-58.	2.0	76

#	Article	IF	Citations
19	Understanding axial progenitor biology <i>in vivo</i> and <i>in vitro</i> . Development (Cambridge), 2021, 148, .	2.5	57
20	Diverse Routes toward Early Somites in the Mouse Embryo. Developmental Cell, 2021, 56, 141-153.e6.	7.0	49
21	The role of pluripotency gene regulatory network components in mediating transitions between pluripotent cell states. Current Opinion in Genetics and Development, 2013, 23, 504-511.	3.3	48
22	Transcriptionally dynamic progenitor populations organised around a stable niche drive axial patterning. Development (Cambridge), 2019, 146, .	2.5	48
23	Mapping transcription factor occupancy using minimal numbers of cells in vitro and in vivo. Genome Research, 2018, 28, 592-605.	5.5	46
24	Role of heparan sulfate-2-O-sulfotransferase in the mouse. Biochimica Et Biophysica Acta - General Subjects, 2002, 1573, 319-327.	2.4	37
25	Identification of Jade1, a Gene Encoding a PHD Zinc Finger Protein, in a Gene Trap Mutagenesis Screen for Genes Involved in Anteroposterior Axis Development. Molecular and Cellular Biology, 2003, 23, 8553-8552.	2.3	37
26	Assessing the bipotency of in vitro-derived neuromesodermal progenitors. F1000Research, 2015, 4, 100.	1.6	36
27	A human iPSC line capable of differentiating into functional macrophages expressing ZsGreen: a tool for the study and <i>in vivo</i> tracking of therapeutic cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170219.	4.0	35
28	A Tgfbr 1 /Snai 1 -dependent developmental module at the core of vertebrate axial elongation. ELife, 2020, 9, .	6.0	34
29	BMP and FGF signaling interact to pattern mesoderm by controlling basic helix-loop-helix transcription factor activity. ELife, 2018, 7, .	6.0	32
30	Assessing the bipotency of in vitro-derived neuromesodermal progenitors. F1000Research, 2015, 4, 100.	1.6	32
31	New semidominant mutations that affect mouse development. Genesis, 2004, 40, 109-117.	1.6	26
32	TPromoter Activity in the Absence of Functional T Protein during Axis Formation and Elongation in the Mouse. Developmental Biology, 1997, 189, 161-173.	2.0	23
33	Distinct SoxB1 networks are required for na $ ilde{A}^{T}$ ve and primed pluripotency. ELife, 2017, 6, .	6.0	17
34	Cdx mutant axial progenitor cells are rescued by grafting to a wild type environment. Developmental Biology, 2010, 347, 228-234.	2.0	15
35	Expression-independent gene trap vectors for random and targeted mutagenesis in embryonic stem cells. Nucleic Acids Research, 2009, 37, e129-e129.	14.5	12
36	<i>MLH1</i> Differential Allelic Expression in Mutation Carriers and Controls. Annals of Human Genetics, 2010, 74, 479-488.	0.8	12

#	Article	IF	CITATIONS
37	A novel triple fusion reporter system for use in gene trap mutagenesis. Genesis, 2007, 45, 353-360.	1.6	11
38	Intrinsic factors and the embryonic environment influence the formation of extragonadal teratomas during gestation. BMC Developmental Biology, 2015, 15, 35.	2.1	10
39	Coupled differentiation and division of embryonic stem cells inferred from clonal snapshots. Physical Biology, 2020, 17, 065009.	1.8	5
40	Methods for Precisely Localized Transfer of Cells or DNA into Early Postimplantation Mouse Embryos. Journal of Visualized Experiments, 2015, , e53295.	0.3	3
41	Disruption of entire Cables2 locus leads to embryonic lethality by diminished Rps21 gene expression and enhanced p53 pathway. ELife, 2021, 10, .	6.0	3
42	A niche for axial stem cells - A cellular perspective in amniotes. Developmental Biology, 2022, 490, 13-21.	2.0	2