List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9183598/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental Treatments for Spinal Cord Injury: What you Should Know. Topics in Spinal Cord Injury Rehabilitation, 2021, 27, 50-74.	1.8	10
2	Optic Nerve Engraftment of Neural Stem Cells. , 2021, 62, 30.		3
3	Quantifying the kinematic features of dexterous finger movements in nonhuman primates with markerless tracking. , 2021, 2021, 6110-6115.		0
4	Regeneration of Corticospinal Axons into Neural Progenitor Cell Grafts After Spinal Cord Injury. Neuroscience Insights, 2020, 15, 263310552097400.	1.6	3
5	Neural Stem Cell Grafts Form Extensive Synaptic Networks that Integrate with Host Circuits after Spinal Cord Injury. Cell Stem Cell, 2020, 27, 430-440.e5.	11.1	108
6	Postmortem Analysis in a Clinical Trial of AAV2-NGF Gene Therapy for Alzheimer's Disease Identifies a Need for Improved Vector Delivery. Human Gene Therapy, 2020, 31, 415-422.	2.7	57
7	Injured adult neurons regress to an embryonic transcriptional growth state. Nature, 2020, 581, 77-82.	27.8	154
8	Origins of Neural Progenitor Cell-Derived Axons Projecting Caudally after Spinal Cord Injury. Stem Cell Reports, 2019, 13, 105-114.	4.8	21
9	Chondroitinase improves anatomical and functional outcomes after primate spinal cord injury. Nature Neuroscience, 2019, 22, 1269-1275.	14.8	98
10	Reorganization of Recurrent Layer 5 Corticospinal Networks Following Adult Motor Training. Journal of Neuroscience, 2019, 39, 4684-4693.	3.6	21
11	Regenerating Corticospinal Axons Innervate Phenotypically Appropriate Neurons within Neural Stem Cell Grafts. Cell Reports, 2019, 26, 2329-2339.e4.	6.4	64
12	Astrocytes migrate from human neural stem cell grafts and functionally integrate into the injured rat spinal cord. Experimental Neurology, 2019, 314, 46-57.	4.1	33
13	Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nature Medicine, 2019, 25, 263-269.	30.7	460
14	Restorative effects of human neural stem cell grafts on the primate spinal cord. Nature Medicine, 2018, 24, 484-490.	30.7	236
15	Oriented Nanofibrous Polymer Scaffolds Containing Protein‣oaded Porous Silicon Generated by Spray Nebulization. Advanced Materials, 2018, 30, e1706785.	21.0	38
16	Injured adult motor and sensory axons regenerate into appropriate organotypic domains of neural progenitor grafts. Nature Communications, 2018, 9, 84.	12.8	90
17	MR-guided delivery of AAV2-BDNF into the entorhinal cortex of non-human primates. Gene Therapy, 2018, 25, 104-114.	4.5	32
18	Adeno-Associated Viral Vector (Serotype 2)–Nerve Growth Factor for Patients With Alzheimer Disease. JAMA Neurology, 2018, 75, 834.	9.0	136

#	Article	IF	CITATIONS
19	P2â€059: BDNF GENE DELIVERY INTO THE ENTORHINAL CORTEX IN RATS: SAFETYâ€TOXICITY DATA. Alzheimer's and Dementia, 2018, 14, P689.	0.8	0
20	P2â€027: TARGET ENGAGEMENT IN A PHASE II CLINICAL TRIAL OF AAV2â€NGF GENE THERAPY FOR ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P677.	0.8	0
21	Physical positioning markedly enhances brain transduction after intrathecal AAV9 infusion. Science Advances, 2018, 4, eaau9859.	10.3	28
22	Activation of Intrinsic Growth State Enhances Host Axonal Regeneration into Neural Progenitor Cell Grafts. Stem Cell Reports, 2018, 11, 861-868.	4.8	21
23	Adult rat myelin enhances axonal outgrowth from neural stem cells. Science Translational Medicine, 2018, 10, .	12.4	28
24	Generation and post-injury integration of human spinal cord neural stem cells. Nature Methods, 2018, 15, 723-731.	19.0	132
25	Hierarchically Ordered Porous and High-Volume Polycaprolactone Microchannel Scaffolds Enhanced Axon Growth in Transected Spinal Cords. Tissue Engineering - Part A, 2017, 23, 415-425.	3.1	36
26	Introduction to neuroscience letters special issue: "Plasticity and regeneration after spinal cord injury― Neuroscience Letters, 2017, 652, 1-2.	2.1	0
27	Comprehensive Monosynaptic Rabies Virus Mapping of Host Connectivity with Neural Progenitor Grafts after Spinal Cord Injury. Stem Cell Reports, 2017, 8, 1525-1533.	4.8	53
28	Myelination of axons emerging from neural progenitor grafts after spinal cord injury. Experimental Neurology, 2017, 296, 69-73.	4.1	14
29	Peripheral nerve growth within a hydrogel microchannel scaffold supported by a kinkâ€resistant conduit. Journal of Biomedical Materials Research - Part A, 2017, 105, 3392-3399.	4.0	33
30	Prolonged human neural stem cell maturation supports recovery in injured rodent CNS. Journal of Clinical Investigation, 2017, 127, 3287-3299.	8.2	98
31	Characterizing the degradation of alginate hydrogel for use in multilumen scaffolds for spinal cord repair. Journal of Biomedical Materials Research - Part A, 2016, 104, 611-619.	4.0	52
32	BDNF gene delivery within and beyond templated agarose multi-channel guidance scaffolds enhances peripheral nerve regeneration. Journal of Neural Engineering, 2016, 13, 066011.	3.5	36
33	Analysis of the behavioral, cellular and molecular characteristics of pain in severe rodent spinal cord injury. Experimental Neurology, 2016, 278, 91-104.	4.1	47
34	Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration. Nature Medicine, 2016, 22, 479-487.	30.7	307
35	A Systems-Level Analysis of the Peripheral Nerve Intrinsic Axonal Growth Program. Neuron, 2016, 89, 956-970.	8.1	314
36	Rehabilitation drives enhancement of neuronal structure in functionally relevant neuronal subsets. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2750-2755.	7.1	53

#	Article	IF	CITATIONS
37	Thalamocortical Projections onto Behaviorally Relevant Neurons Exhibit Plasticity during Adult Motor Learning. Neuron, 2016, 89, 1173-1179.	8.1	62
38	Molecular and Cellular Mechanisms of Axonal Regeneration After Spinal Cord Injury. Molecular and Cellular Proteomics, 2016, 15, 394-408.	3.8	59
39	A Unilateral Cervical Spinal Cord Contusion Injury Model in Non-Human Primates (Macaca mulatta). Journal of Neurotrauma, 2016, 33, 439-459.	3.4	42
40	Neural Stem Cells for Spinal Cord Injury. , 2016, , 297-315.		5
41	NGF and BDNF Gene Therapy for Alzheimer's Disease. , 2016, , 33-64.		4
42	Cholinergic systems are essential for late-stage maturation and refinement of motor cortical circuits. Journal of Neurophysiology, 2015, 113, 1585-1597.	1.8	17
43	Motor Cortex Maturation Is Associated with Reductions in Recurrent Connectivity among Functional Subpopulations and Increases in Intrinsic Excitability. Journal of Neuroscience, 2015, 35, 4719-4728.	3.6	27
44	Brain derived neurotrophic factor release from layer-by-layer coated agarose nerve guidance scaffolds. Acta Biomaterialia, 2015, 18, 128-131.	8.3	23
45	Transcriptomic Approaches to Neural Repair. Journal of Neuroscience, 2015, 35, 13860-13867.	3.6	28
46	Pronounced species divergence in corticospinal tract reorganization and functional recovery after lateralized spinal cord injury favors primates. Science Translational Medicine, 2015, 7, 302ra134.	12.4	148
47	Nerve Growth Factor Gene Therapy. JAMA Neurology, 2015, 72, 1139.	9.0	240
48	Leveraging biomedical informatics for assessing plasticity and repair in primate spinal cord injury. Brain Research, 2015, 1619, 124-138.	2.2	16
49	Nerve growth factor is primarily produced by GABAergic neurons of the adult rat cortex. Frontiers in Cellular Neuroscience, 2014, 8, 220.	3.7	41
50	Development of a Database for Translational Spinal Cord Injury Research. Journal of Neurotrauma, 2014, 31, 1789-1799.	3.4	100
51	Promotion of Survival and Differentiation of Neural Stem Cells with Fibrin and Growth Factor Cocktails after Severe Spinal Cord Injury. Journal of Visualized Experiments, 2014, , e50641.	0.3	40
52	Neural Stem Cell Dissemination after Grafting to CNS Injury Sites. Cell, 2014, 156, 388-389.	28.9	35
53	Axonal growth and connectivity from neural stem cell grafts in models of spinal cord injury. Current Opinion in Neurobiology, 2014, 27, 103-109.	4.2	75
54	Neural stem cells in models of spinal cord injury. Experimental Neurology, 2014, 261, 494-500.	4.1	13

#	Article	IF	CITATIONS
55	Long-Distance Axonal Growth from Human Induced Pluripotent Stem Cells after Spinal Cord Injury. Neuron, 2014, 83, 789-796.	8.1	312
56	Early BDNF Treatment Ameliorates Cell Loss in the Entorhinal Cortex of APP Transgenic Mice. Journal of Neuroscience, 2013, 33, 15596-15602.	3.6	148
57	Templated agarose scaffolds for the support of motor axon regeneration into sites of complete spinal cord transection. Biomaterials, 2013, 34, 1529-1536.	11.4	135
58	Low-density Lipoprotein Receptor-related Protein 1 (LRP1)-dependent Cell Signaling Promotes Axonal Regeneration. Journal of Biological Chemistry, 2013, 288, 26557-26568.	3.4	59
59	SnoN Facilitates Axonal Regeneration after Spinal Cord Injury. PLoS ONE, 2013, 8, e71906.	2.5	10
60	Opportunities in rehabilitation research. Journal of Rehabilitation Research and Development, 2013, 50, vii-xxxii.	1.6	7
61	Motor Axonal Regeneration after Partial and Complete Spinal Cord Transection. Journal of Neuroscience, 2012, 32, 8208-8218.	3.6	122
62	Methods for Functional Assessment After C7 Spinal Cord Hemisection in the Rhesus Monkey. Neurorehabilitation and Neural Repair, 2012, 26, 556-569.	2.9	43
63	Time Controlled Release of Arabinofuranosylcytosine (Ara-C) from Agarose Hydrogels using Layer-by-Layer Assembly: An In Vitro Study. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 439-463.	3.5	16
64	Gene therapy, neurotrophic factors and spinal cord regeneration. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 109, 563-574.	1.8	22
65	Long-Distance Growth and Connectivity of Neural Stem Cells after Severe Spinal Cord Injury. Cell, 2012, 150, 1264-1273.	28.9	760
66	Concepts and Methods for the Study of Axonal Regeneration in the CNS. Neuron, 2012, 74, 777-791.	8.1	269
67	Frontiers Of Spinal Cord And Spine Repair: Experimental Approaches for Repair of Spinal Cord Injury. Advances in Experimental Medicine and Biology, 2012, 760, 1-15.	1.6	18
68	Animal Models of Neurologic Disorders: A Nonhuman Primate Model of Spinal Cord Injury. Neurotherapeutics, 2012, 9, 380-392.	4.4	80
69	Conditioning lesions before or after spinal cord injury recruit broad genetic mechanisms that sustain axonal regeneration: Superiority to camp-mediated effects. Experimental Neurology, 2012, 235, 162-173.	4.1	97
70	Association of early experience with neurodegeneration in aged primates. Neurobiology of Aging, 2011, 32, 151-156.	3.1	11
71	Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nature Reviews Drug Discovery, 2011, 10, 209-219.	46.4	710
72	Unconstrained three-dimensional reaching in Rhesus monkeys. Experimental Brain Research, 2011, 209, 35-50.	1.5	14

MARK H TUSZYNSKI

#	Article	IF	CITATIONS
73	Neurotrophins: Potential Therapeutic Tools for the Treatment of Spinal Cord Injury. Neurotherapeutics, 2011, 8, 694-703.	4.4	67
74	Structural plasticity within highly specific neuronal populations identifies a unique parcellation of motor learning in the adult brain. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2545-2550.	7.1	95
75	Time Controlled Protein Release from Layerâ€by‣ayer Assembled Multilayer Functionalized Agarose Hydrogels. Advanced Functional Materials, 2010, 20, 247-258.	14.9	94
76	Regeneration of long-tract axons through sites of spinal cord injury using templated agarose scaffolds. Biomaterials, 2010, 31, 6719-6729.	11.4	162
77	Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury. Nature Neuroscience, 2010, 13, 1505-1510.	14.8	346
78	Local and Remote Growth Factor Effects after Primate Spinal Cord Injury. Journal of Neuroscience, 2010, 30, 9728-9737.	3.6	130
79	Guidance Molecules in Axon Regeneration. Cold Spring Harbor Perspectives in Biology, 2010, 2, a001867-a001867.	5.5	306
80	The Basal Forebrain Cholinergic System Is Required Specifically for Behaviorally Mediated Cortical Map Plasticity. Journal of Neuroscience, 2009, 29, 5992-6000.	3.6	78
81	Extensive spinal decussation and bilateral termination of cervical corticospinal projections in rhesus monkeys. Journal of Comparative Neurology, 2009, 513, 151-163.	1.6	146
82	A novel inducible tyrosine kinase receptor to regulate signal transduction and neurite outgrowth. Journal of Neuroscience Research, 2009, 87, 2624-2631.	2.9	14
83	Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease. Nature Medicine, 2009, 15, 331-337.	30.7	880
84	Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury. Nature Neuroscience, 2009, 12, 1106-1113.	14.8	194
85	IGF-I gene delivery promotes corticospinal neuronal survival but not regeneration after adult CNS injury. Experimental Neurology, 2009, 215, 53-59.	4.1	102
86	Long-term reversal of cholinergic neuronal decline in aged non-human primates by lentiviral NGF gene delivery. Experimental Neurology, 2009, 215, 153-159.	4.1	67
87	Spinal cord injury: plasticity, regeneration and the challenge of translational drug development. Trends in Neurosciences, 2009, 32, 41-47.	8.6	251
88	Combined Intrinsic and Extrinsic Neuronal Mechanisms Facilitate Bridging Axonal Regeneration One Year after Spinal Cord Injury. Neuron, 2009, 64, 165-172.	8.1	197
89	Induction of corticospinal regeneration by lentiviral trkB-induced Erk activation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7215-7220.	7.1	124

90 NEUROTROPHIC FACTORS. , 2008, , 95-144.

MARK H TUSZYNSKI

#	Article	IF	CITATIONS
91	Growth factors and combinatorial therapies for CNS regeneration. Experimental Neurology, 2008, 209, 313-320.	4.1	139
92	Therapeutic potential of CERE-110 (AAV2-NGF): Targeted, stable, and sustained NGF delivery and trophic activity on rodent basal forebrain cholinergic neurons. Experimental Neurology, 2008, 211, 574-584.	4.1	76
93	Netrin-1 Is a Novel Myelin-Associated Inhibitor to Axon Growth. Journal of Neuroscience, 2008, 28, 1099-1108.	3.6	123
94	Efficient Retrograde Neuronal Transduction Utilizing Self-complementary AAV1. Molecular Therapy, 2008, 16, 296-301.	8.2	115
95	Nerve Growth Factor Gene Therapy in Alzheimer Disease. Alzheimer Disease and Associated Disorders, 2007, 21, 179-189.	1.3	94
96	Transient Growth Factor Delivery Sustains Regenerated Axons after Spinal Cord Injury. Journal of Neuroscience, 2007, 27, 10535-10545.	3.6	100
97	Axon regeneration through scars and into sites of chronic spinal cord injury. Experimental Neurology, 2007, 203, 8-21.	4.1	149
98	Nerve growth factor gene delivery: Animal models to clinical trials. Developmental Neurobiology, 2007, 67, 1204-1215.	3.0	48
99	Rebuilding the brain: resurgence of fetal grafting. Nature Neuroscience, 2007, 10, 1229-1230.	14.8	13
100	A form of motor cortical plasticity that correlates with recovery of function after brain injury. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11370-11375.	7.1	185
101	Templated Agarose Scaffolds Support Linear Axonal Regeneration. Tissue Engineering, 2006, 12, 2777-2787.	4.6	159
102	Neurotrophin-3 Gradients Established by Lentiviral Gene Delivery Promote Short-Distance Axonal Bridging beyond Cellular Grafts in the Injured Spinal Cord. Journal of Neuroscience, 2006, 26, 9713-9721.	3.6	167
103	Clinical Trials in Spinal Cord Injury. Journal of Neurotrauma, 2006, 23, 586-593.	3.4	38
104	Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Biomaterials, 2006, 27, 443-451.	11.4	283
105	Olfactory Ensheathing Cells Do Not Exhibit Unique Migratory or Axonal Growth-Promoting Properties after Spinal Cord Injury. Journal of Neuroscience, 2006, 26, 11120-11130.	3.6	118
106	Endogenous Neurogenesis Replaces Oligodendrocytes and Astrocytes after Primate Spinal Cord Injury. Journal of Neuroscience, 2006, 26, 2157-2166.	3.6	149
107	Templated Agarose Scaffolds Support Linear Axonal Regeneration. Tissue Engineering, 2006, .	4.6	0
108	A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nature Medicine, 2005, 11, 551-555.	30.7	979

#	Article	IF	CITATIONS
109	Kinematic and EMG Determinants in Quadrupedal Locomotion of a Non-Human Primate (Rhesus). Journal of Neurophysiology, 2005, 93, 3127-3145.	1.8	135
110	Performance of locomotion and foot grasping following a unilateral thoracic corticospinal tract lesion in monkeys (Macaca mulatta). Brain, 2005, 128, 2338-2358.	7.6	121
111	The Basal Forebrain Cholinergic System Is Essential for Cortical Plasticity and Functional Recovery following Brain Injury. Neuron, 2005, 46, 173-179.	8.1	211
112	Regulated lentiviral NGF gene transfer controls rescue of medial septal cholinergic neurons. Molecular Therapy, 2005, 11, 916-925.	8.2	67
113	Prospects for Gene Therapy for Central Nervous System Disease. , 2005, , 267-283.		0
114	Combinatorial Therapy with Neurotrophins and cAMP Promotes Axonal Regeneration beyond Sites of Spinal Cord Injury. Journal of Neuroscience, 2004, 24, 6402-6409.	3.6	349
115	Memory Impairment in Aged Primates Is Associated with Focal Death of Cortical Neurons and Atrophy of Subcortical Neurons. Journal of Neuroscience, 2004, 24, 4373-4381.	3.6	115
116	The fabrication and characterization of linearly oriented nerve guidance scaffolds for spinal cord injury. Biomaterials, 2004, 25, 5839-5846.	11.4	211
117	Bilateral corticospinal projections arise from each motor cortex in the macaque monkey: A quantitative study. Journal of Comparative Neurology, 2004, 473, 147-161.	1.6	139
118	Induction of bone marrow stromal cells to neurons: Differentiation, transdifferentiation, or artifact?. Journal of Neuroscience Research, 2004, 77, 174-191.	2.9	403
119	Nerve growth factor: from animal models of cholinergic neuronal degeneration to gene therapy in Alzheimer's disease. Progress in Brain Research, 2004, 146, 439-449.	1.4	61
120	The Ageless QuestionWhat Accounts for Age-Related Cognitive Decline?. Science of Aging Knowledge Environment: SAGE KE, 2004, 2004, pe20-pe20.	0.8	1
121	Hippocampal cell genesis does not correlate with spatial learning ability in aged rats. Journal of Comparative Neurology, 2003, 459, 201-207.	1.6	133
122	Cellular GDNF delivery promotes growth of motor and dorsal column sensory axons after partial and complete spinal cord transections and induces remyelination. Journal of Comparative Neurology, 2003, 467, 403-417.	1.6	164
123	NT-3 gene delivery elicits growth of chronically injured corticospinal axons and modestly improves functional deficits after chronic scar resection. Experimental Neurology, 2003, 181, 47-56.	4.1	136
124	Lesions of the Basal Forebrain Cholinergic System Impair Task Acquisition and Abolish Cortical Plasticity Associated with Motor Skill Learning. Neuron, 2003, 38, 819-829.	8.1	313
125	Gene therapy for neurological disease. Expert Opinion on Biological Therapy, 2003, 3, 815-828.	3.1	17
126	Axonal Regeneration through Regions of Chondroitin Sulfate Proteoglycan Deposition after Spinal Cord Injury: A Balance of Permissiveness and Inhibition. Journal of Neuroscience, 2003, 23, 9276-9288.	3.6	259

#	Article	IF	CITATIONS
127	Therapeutic potential of nervous system growth factors for neurodegenerative disease. Expert Review of Neurotherapeutics, 2002, 2, 89-96.	2.8	9
128	Chapter 31 Spontaneous and neurotrophin-induced axonal plasticity after spinal cord injury. Progress in Brain Research, 2002, 137, 415-423.	1.4	28
129	Spinal Cord Injury Elicits Expression of Keratan Sulfate Proteoglycans by Macrophages, Reactive Microglia, and Oligodendrocyte Progenitors. Journal of Neuroscience, 2002, 22, 4611-4624.	3.6	141
130	New strategies in neural repair. Progress in Brain Research, 2002, 138, 401-409.	1.4	12
131	Growth factor gene therapy for Alzheimer disease. Neurosurgical Focus, 2002, 13, 1-5.	2.3	197
132	Neurotrophic factors, gene therapy, and neural stem cells for spinal cord repair. Brain Research Bulletin, 2002, 57, 833-838.	3.0	162
133	NG2 Is a Major Chondroitin Sulfate Proteoglycan Produced after Spinal Cord Injury and Is Expressed by Macrophages and Oligodendrocyte Progenitors. Journal of Neuroscience, 2002, 22, 2792-2803.	3.6	440
134	Growth-factor gene therapy for neurodegenerative disorders. Lancet Neurology, The, 2002, 1, 51-57.	10.2	120
135	Spontaneous and augmented growth of axons in the primate spinal cord: Effects of local injury and nerve growth factor-secreting cell grafts. Journal of Comparative Neurology, 2002, 449, 88-101.	1.6	86
136	Nerve growth factor gene therapy for alzheimer's disease. Journal of Molecular Neuroscience, 2002, 19, 207-207.	2.3	15
137	Chronic intrathecal infusions after spinal cord injury cause scarring and compression. Microscopy Research and Technique, 2001, 54, 317-324.	2.2	93
138	GDNF gene delivery to injured adult CNS motor neurons promotes axonal growth, expression of the trophic neuropeptide CGRP, and cellular protection. Journal of Comparative Neurology, 2001, 436, 399-410.	1.6	99
139	Neurotrophism without neurotropism: BDNF promotes survival but not growth of lesioned corticospinal neurons. Journal of Comparative Neurology, 2001, 436, 456-470.	1.6	146
140	Reactive astrocytes express estrogen receptors in the injured primate brain. Journal of Comparative Neurology, 2001, 433, 115-123.	1.6	86
141	Conservation of neuronal number and size in the entorhinal cortex of behaviorally characterized aged rats. Journal of Comparative Neurology, 2001, 438, 445-456.	1.6	101
142	Neurotrophic factors, cellular bridges and gene therapy for spinal cord injury. Journal of Physiology, 2001, 533, 83-89.	2.9	220
143	Neurite outgrowth can be modulated in vitro using a tetracycline-repressible gene therapy vector expressing human nerve growth factor. Journal of Neuroscience Research, 2000, 59, 402-409.	2.9	36
144	Conservation of neuron number and size in entorhinal cortex layers II, III, and V/VI of aged primates. Journal of Comparative Neurology, 2000, 422, 396-401.	1.6	95

Mark	Н Ти	SZYN	SKI
IVI/ VICIC	1114	2211	

#	Article	IF	CITATIONS
145	Human Spinal Cord Retains Substantial Structural Mass in Chronic Stages After Injury. Journal of Neurotrauma, 1999, 16, 523-531.	3.4	45
146	Neurotrophic Factors. , 1999, , 109-158.		8
147	Spinal Cord Regeneration. , 1999, , 605-629.		6
148	Growth factor therapy. Mental Retardation and Developmental Disabilities Research Reviews, 1998, 4, 212-222.	3.6	12
149	Chapter 32 Neurotrophin gene therapy in CNS models of trauma and degeneration. Progress in Brain Research, 1998, 117, 473-484.	1.4	51
150	Grafts of Genetically Modified Schwann Cells to the Spinal Cord: Survival, Axon Growth, and Myelination. Cell Transplantation, 1998, 7, 187-196.	2.5	125
151	Gene Therapy for Nervous System Disease. Annals of the New York Academy of Sciences, 1997, 835, 1-11.	3.8	15
152	Reversible schwann cell hyperplasia and sprouting of sensory and sympathetic neurites after intraventricular administration of nerve growth factor. Annals of Neurology, 1997, 41, 82-93.	5.3	133
153	Nerve Growth Factor Delivery by Gene Transfer Induces Differential Outgrowth of Sensory, Motor, and Noradrenergic Neurites after Adult Spinal Cord Injury. Experimental Neurology, 1996, 137, 157-173.	4.1	227
154	Somatic Gene Therapy for Nervous System Disease. Novartis Foundation Symposium, 1996, 196, 85-97.	1.1	2
155	Neurotrophic factors and diseases of the nervous system. Annals of Neurology, 1994, 35, S9-S12.	5.3	28
156	Fibroblasts Genetically Modified to Produce Nerve Growth Factor Induce Robust Neuritic Ingrowth after Grafting to the Spinal Cord. Experimental Neurology, 1994, 126, 1-14.	4.1	248
157	Somatic gene transfer to the adult primate central nervous system:in vitroandin vivocharacterization of cells genetically modified to secrete nerve growth factor. Neurobiology of Disease, 1994, 1, 67-78.	4.4	40
158	Recombinant human nerve growth factor infusions prevent cholinergic neuronal degeneration in the adult primate brain. Annals of Neurology, 1991, 30, 625-636.	5.3	199
159	Human β nerve growth factor obtained from a baculovirus expression system has potent in vitro and in vivo neurotrophic activity. Experimental Neurology, 1990, 110, 11-24.	4.1	41