Simona Eicke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9182730/publications.pdf

Version: 2024-02-01

22 papers

1,762 citations

430874 18 h-index 22 g-index

24 all docs

 $\begin{array}{c} 24 \\ \text{docs citations} \end{array}$

24 times ranked 1980 citing authors

#	Article	IF	CITATIONS
1	A multifaceted analysis reveals two distinct phases of chloroplast biogenesis during de-etiolation in Arabidopsis. ELife, $2021,10,.$	6.0	41
2	Ectopic maltase alleviates dwarf phenotype and improves plant frost tolerance of maltose transporter mutants. Plant Physiology, 2021, 186, 315-329.	4.8	5
3	Distinct plastid fructose bisphosphate aldolases function in photosynthetic and non-photosynthetic metabolism in Arabidopsis. Journal of Experimental Botany, 2021, 72, 3739-3755.	4.8	19
4	Coalescence and directed anisotropic growth of starch granule initials in subdomains of Arabidopsis thaliana chloroplasts. Nature Communications, 2021, 12, 6944.	12.8	21
5	STARCH SYNTHASE5, a Noncanonical Starch Synthase-Like Protein, Promotes Starch Granule Initiation in Arabidopsis. Plant Cell, 2020, 32, 2543-2565.	6.6	49
6	LIKE SEX4 $1~\rm Acts$ as a $\hat{1}^2$ -Amylase-Binding Scaffold on Starch Granules during Starch Degradation. Plant Cell, 2019, 31, 2169-2186.	6.6	26
7	Distinct Functions of STARCH SYNTHASE 4 Domains in Starch Granule Formation. Plant Physiology, 2018, 176, 566-581.	4.8	50
8	Two Plastidial Coiled-Coil Proteins Are Essential for Normal Starch Granule Initiation in Arabidopsis. Plant Cell, 2018, 30, 1523-1542.	6.6	62
9	Increasing the carbohydrate storage capacity of plants by engineering a glycogen-like polymer pool in the cytosol. Metabolic Engineering, 2017, 40, 23-32.	7.0	7
10	Plastid thylakoid architecture optimizes photosynthesis in diatoms. Nature Communications, 2017, 8, 15885.	12.8	93
11	Diurnal Leaf Starch Content: An Orphan Trait in Forage Legumes. Agronomy, 2017, 7, 16.	3.0	32
12	The Starch Granule-Associated Protein EARLY STARVATION1 Is Required for the Control of Starch Degradation in <i>Arabidopsis thaliana</i> Leaves. Plant Cell, 2016, 28, 1472-1489.	6.6	64
13	PROTEIN TARGETING TO STARCH Is Required for Localising GRANULE-BOUND STARCH SYNTHASE to Starch Granules and for Normal Amylose Synthesis in Arabidopsis. PLoS Biology, 2015, 13, e1002080.	5.6	139
14	Genetic Evidence That Chain Length and Branch Point Distributions Are Linked Determinants of Starch Granule Formation in Arabidopsis Â. Plant Physiology, 2014, 165, 1457-1474.	4.8	46
15	Plastidial NAD-Dependent Malate Dehydrogenase Is Critical for Embryo Development and Heterotrophic Metabolism in Arabidopsis. Plant Physiology, 2014, 164, 1175-1190.	4.8	78
16	Starch synthase 4 is essential for coordination of starch granule formation with chloroplast division during Arabidopsis leaf expansion. New Phytologist, 2013, 200, 1064-1075.	7.3	93
17	The Simultaneous Abolition of Three Starch Hydrolases Blocks Transient Starch Breakdown in Arabidopsis. Journal of Biological Chemistry, 2012, 287, 41745-41756.	3.4	56
18	Blocking the Metabolism of Starch Breakdown Products in Arabidopsis Leaves Triggers Chloroplast Degradation. Molecular Plant, 2009, 2, 1233-1246.	8.3	127

#	Article	IF	CITATION
19	STARCH-EXCESS4 Is a Laforin-Like Phosphoglucan Phosphatase Required for Starch Degradation in <i>Arabidopsis thaliana </i> ÂÂ. Plant Cell, 2009, 21, 334-346.	6.6	208
20	Starch Granule Biosynthesis in <i>Arabidopsis</i> Is Abolished by Removal of All Debranching Enzymes but Restored by the Subsequent Removal of an Endoamylase. Plant Cell, 2009, 20, 3448-3466.	6.6	129
21	Î ² -AMYLASE4, a Noncatalytic Protein Required for Starch Breakdown, Acts Upstream of Three Active Î ² -Amylases in <i>Arabidopsis</i> Chloroplasts Â. Plant Cell, 2008, 20, 1040-1058.	6.6	285
22	Evidence for Distinct Mechanisms of Starch Granule Breakdown in Plants. Journal of Biological Chemistry, 2006, 281, 12050-12059.	3.4	131