
Kurt R Stenmark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/918194/publications.pdf Version: 2024-02-01

KUDT P STENMADK

#	Article	IF	CITATIONS
1	Hemodynamically Unloading the Distal Pulmonary Circulation in Pulmonary Hypertension: A Modeling Study. Journal of Biomechanical Engineering, 2022, 144, .	1.3	Ο
2	Potential long-term effects of SARS-CoV-2 infection on the pulmonary vasculature: a global perspective. Nature Reviews Cardiology, 2022, 19, 314-331.	13.7	46
3	U-shaped association of uric acid to overall-cause mortality and its impact on clinical management of hyperuricemia. Redox Biology, 2022, 51, 102271.	9.0	51
4	Peripheral Blood Inflammation Profile of Patients with Pulmonary Arterial Hypertension Using the High-Throughput Olink Proteomics Platform. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 580-581.	2.9	2
5	Perspectives on Cognitive Phenotypes and Models of Vascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, , 101161ATVBAHA122317395.	2.4	4
6	The role of macrophages in right ventricular remodeling in experimental pulmonary hypertension. Pulmonary Circulation, 2022, 12, .	1.7	3
7	Platelet activation contributes to hypoxia-induced inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L413-L421.	2.9	21
8	Targeting histone acetylation in pulmonary hypertension and right ventricular hypertrophy. British Journal of Pharmacology, 2021, 178, 54-71.	5.4	69
9	Microenvironmental Regulation of Macrophage Transcriptomic and Metabolomic Profiles in Pulmonary Hypertension. Frontiers in Immunology, 2021, 12, 640718.	4.8	19
10	17β-estradiol and estrogen receptor α protect right ventricular function in pulmonary hypertension via BMPR2 and apelin. Journal of Clinical Investigation, 2021, 131, .	8.2	47
11	Shortâ€Term Effects of Inhaled Nitric Oxide on Right Ventricular Flow Hemodynamics by 4â€Dimensional–Flow Magnetic Resonance Imaging in Children With Pulmonary Arterial Hypertension. Journal of the American Heart Association, 2021, 10, e020548.	3.7	12
12	Mechanisms of SARSâ€CoVâ€2â€induced lung vascular disease: potential role of complement. Pulmonary Circulation, 2021, 11, 1-14.	1.7	34
13	Mechanisms Contributing to the Dysregulation of miRNA-124 in Pulmonary Hypertension. International Journal of Molecular Sciences, 2021, 22, 3852.	4.1	12
14	Study of ER stress and apoptotic proteins in the heart and tumor exposed to doxorubicin. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119039.	4.1	18
15	Newer insights into the pathobiological and pharmacological basis of the sex disparity in patients with pulmonary arterial hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L1025-L1037.	2.9	8
16	Design, synthesis and biological evaluations of a long-acting, hypoxia-activated prodrug of fasudil, a ROCK inhibitor, to reduce its systemic side-effects. Journal of Controlled Release, 2021, 334, 237-247.	9.9	16
17	The Short-Chain Fatty Acid Butyrate Attenuates Pulmonary Vascular Remodeling and Inflammation in Hypoxia-Induced Pulmonary Hypertension. International Journal of Molecular Sciences, 2021, 22, 9916.	4.1	28
18	Complement-containing small extracellular vesicles from adventitial fibroblasts induce proinflammatory and metabolic reprogramming in macrophages. JCI Insight, 2021, 6, .	5.0	13

#	Article	IF	CITATIONS
19	Brief Report: Case Comparison of Therapy With the Histone Deacetylase Inhibitor Vorinostat in a Neonatal Calf Model of Pulmonary Hypertension. Frontiers in Physiology, 2021, 12, 712583.	2.8	3
20	Endothelial cell PHD2-HIF1α-PFKFB3 contributes to right ventricle vascular adaptation in pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L675-L685.	2.9	7
21	Evidence supporting a role for circulating macrophages in the regression of vascular remodeling following subâ€chronic exposure to hemoglobin plus hypoxia. Pulmonary Circulation, 2021, 11, 1-11.	1.7	1
22	Book review on hypoxic respiratory failure in the newborn – from origins to clinical management. Pulmonary Circulation, 2021, 11, 1-2.	1.7	1
23	Metabolite G-Protein Coupled Receptors in Cardio-Metabolic Diseases. Cells, 2021, 10, 3347.	4.1	5
24	Immunoglobulin-driven Complement Activation Regulates Proinflammatory Remodeling in Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 224-239.	5.6	60
25	Interstitial macrophage-derived thrombospondin-1 contributes to hypoxia-induced pulmonary hypertension. Cardiovascular Research, 2020, 116, 2021-2030.	3.8	34
26	Pluripotent hematopoietic stem cells augment α-adrenergic receptor-mediated contraction of pulmonary artery and contribute to the pathogenesis of pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L386-L401.	2.9	9
27	P2Y Purinergic Receptors, Endothelial Dysfunction, and Cardiovascular Diseases. International Journal of Molecular Sciences, 2020, 21, 6855.	4.1	24
28	The effect of dietary nitrate supplementation on the speed-duration relationship in mice with sickle cell disease. Journal of Applied Physiology, 2020, 129, 474-482.	2.5	9
29	Pulmonary-arterial-hypertension (PAH)-on-a-chip: fabrication, validation and application. Lab on A Chip, 2020, 20, 3334-3345.	6.0	23
30	RNA-Binding Proteins in Pulmonary Hypertension. International Journal of Molecular Sciences, 2020, 21, 3757.	4.1	6
31	Extracellular adenosine enhances pulmonary artery vasa vasorum endothelial cell barrier function via Gi/ELMO1/Rac1/PKA-dependent signaling mechanisms. American Journal of Physiology - Cell Physiology, 2020, 319, C183-C193.	4.6	6
32	Perspective: pathobiological paradigms in pulmonary hypertension, time for reappraisal. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L1131-L1137.	2.9	7
33	Hypoxic activation of glucose-6-phosphate dehydrogenase controls the expression of genes involved in the pathogenesis of pulmonary hypertension through the regulation of DNA methylation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L773-L786.	2.9	25
34	c-Jun, Foxo3a, and c-Myc Transcription Factors are Key Regulators of ATP-Mediated Angiogenic Responses in Pulmonary Artery Vasa Vasorum Endothelial Cells â€. Cells, 2020, 9, 416.	4.1	9
35	Stable isotope metabolomics of pulmonary artery smooth muscle and endothelial cells in pulmonary hypertension and with TGF-beta treatment. Scientific Reports, 2020, 10, 413.	3.3	24
36	Band on the run: insights into right ventricular reverse remodelling. Cardiovascular Research, 2020, 116, 1651-1653.	3.8	3

#	Article	IF	CITATIONS
37	Clickable decellularized extracellular matrix as a new tool for building hybrid-hydrogels to model chronic fibrotic diseases <i>in vitro</i> . Journal of Materials Chemistry B, 2020, 8, 6814-6826.	5.8	64
38	Inflammation, immunity, and vascular remodeling in pulmonary hypertension; Evidence for complement involvement?. Global Cardiology Science & Practice, 2020, 2020, e202001.	0.4	17
39	Impact Of Cell-free Hemoglobin On Exercising Muscle Vascular Control In Rats. Medicine and Science in Sports and Exercise, 2020, 52, 222-222.	0.4	0
40	Mechanisms contributing to persistently activated cell phenotypes in pulmonary hypertension. Journal of Physiology, 2019, 597, 1103-1119.	2.9	28
41	Proximal pulmonary vascular stiffness as a prognostic factor in children with pulmonary arterial hypertension. European Heart Journal Cardiovascular Imaging, 2019, 20, 209-217.	1.2	36
42	Effects of living at moderate altitude on pulmonary vascular function and exercise capacity in mice with sickle cell anaemia. Journal of Physiology, 2019, 597, 1073-1085.	2.9	11
43	Cardiopulmonary remodeling in fattened beef cattle: a naturally occurring large animal model of obesityâ€associated pulmonary hypertension with left heart disease. Pulmonary Circulation, 2019, 9, 1-13.	1.7	14
44	The right ventricular fibroblast secretome drives cardiomyocyte dedifferentiation. PLoS ONE, 2019, 14, e0220573.	2.5	11
45	Pegloticase and lowering blood pressure in refractory gout; is it uric acid or hydrogen peroxide?. European Journal of Internal Medicine, 2019, 69, e11-e12.	2.2	6
46	Redistribution of ECâ€5OD resolves bleomycinâ€induced inflammation <i>via</i> increased apoptosis of recruited alveolar macrophages. FASEB Journal, 2019, 33, 13465-13475.	0.5	14
47	Suppression of HIF2 signalling attenuates the initiation of hypoxia-induced pulmonary hypertension. European Respiratory Journal, 2019, 54, 1900378.	6.7	68
48	Role of Inflammatory Cell Subtypes in Heart Failure. Journal of Immunology Research, 2019, 2019, 1-9.	2.2	67
49	CAR, a Homing Peptide, Prolongs Pulmonary Preferential Vasodilation by Increasing Pulmonary Retention and Reducing Systemic Absorption of Liposomal Fasudil. Molecular Pharmaceutics, 2019, 16, 3414-3429.	4.6	19
50	RhoGTPase in Vascular Disease. Cells, 2019, 8, 551.	4.1	51
51	Layer-specific arterial micromechanics and microstructure: Influences of age, anatomical location, and processing technique. Journal of Biomechanics, 2019, 88, 113-121.	2.1	11
52	Differences in pulmonary arterial flow hemodynamics between children and adults with pulmonary arterial hypertension as assessed by 4D-flow CMR studies. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H1091-H1104.	3.2	20
53	Pre-clinical assessment of a water-in-fluorocarbon emulsion for the treatment of pulmonary vascular diseases. Drug Delivery, 2019, 26, 147-157.	5.7	6
54	Hypoxiaâ€induced pulmonary hypertension and chronic lung disease: caveolinâ€1 dysfunction an important underlying feature. Pulmonary Circulation, 2019, 9, 1-12.	1.7	15

#	Article	IF	CITATIONS
55	Characterizing the impact of altitude and finishing system on mean pulmonary arterial pressure and carcass characteristics in Angus cattle. Translational Animal Science, 2019, 3, 1669-1672.	1.1	3
56	A therapeutic antibody targeting osteoprotegerin attenuates severe experimental pulmonary arterial hypertension. Nature Communications, 2019, 10, 5183.	12.8	22
57	Hot topics in the mechanisms of pulmonary arterial hypertension disease: cancerâ€like pathobiology, the role of the adventitia, systemic involvement, and right ventricular failure. Pulmonary Circulation, 2019, 9, 1-15.	1.7	23
58	Tissue-informed engineering strategies for modeling human pulmonary diseases. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L303-L320.	2.9	24
59	Inhaled combination of sildenafil and rosiglitazone improves pulmonary hemodynamics, cardiac function, and arterial remodeling. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L119-L130.	2.9	13
60	Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. European Respiratory Journal, 2019, 53, 1801887.	6.7	776
61	An Hb-mediated circulating macrophage contributing to pulmonary vascular remodeling in sickle cell disease. JCI Insight, 2019, 4, .	5.0	17
62	How Many FOXs Are There on The Road to Pulmonary Hypertension?. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 704-707.	5.6	5
63	Dynamic and diverse changes in the functional properties of vascular smooth muscle cells in pulmonary hypertension. Cardiovascular Research, 2018, 114, 551-564.	3.8	96
64	A Twist on Pulmonary Vascular Remodeling: Endothelial to Mesenchymal Transition?. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 140-141.	2.9	6
65	Peroxisome Proliferator-activated Receptor Î ³ and Mitochondria: Drivers or Passengers on the Road to Pulmonary Hypertension?. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 555-557.	2.9	5
66	Repurposing rosiglitazone, a PPAR-γ agonist and oral antidiabetic, as an inhaled formulation, for the treatment of PAH. Journal of Controlled Release, 2018, 280, 113-123.	9.9	19
67	Impact of cell-free hemoglobin on contracting skeletal muscle microvascular oxygen pressure dynamics. Nitric Oxide - Biology and Chemistry, 2018, 76, 29-36.	2.7	10
68	Development of an electrospun biomimetic polyurea scaffold suitable for vascular grafting. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 278-290.	3.4	10
69	4D-flow cardiac magnetic resonance-derived vorticity is sensitive marker of left ventricular diastolic dysfunction in patients with mild-to-moderate chronic obstructive pulmonary disease. European Heart Journal Cardiovascular Imaging, 2018, 19, 415-424.	1.2	41
70	Hallmarks of Pulmonary Hypertension: Mesenchymal and Inflammatory Cell Metabolic Reprogramming. Antioxidants and Redox Signaling, 2018, 28, 230-250.	5.4	71
71	Urocortin 2: will a drug targeting both the vasculature and the right ventricle be the future of pulmonary hypertension therapy?. Cardiovascular Research, 2018, 114, 1057-1059.	3.8	1
72	Biomimetic soft fibrous hydrogels for contractile and pharmacologically responsive smooth muscle. Acta Biomaterialia, 2018, 74, 121-130.	8.3	26

#	Article	IF	CITATIONS
73	JNK2 regulates vascular remodeling in pulmonary hypertension. Pulmonary Circulation, 2018, 8, 1-13.	1.7	3
74	Circulating MicroRNA Markers for Pulmonary Hypertension in Supervised Exercise Intervention and Nightly Oxygen Intervention. Frontiers in Physiology, 2018, 9, 955.	2.8	14
75	Vascular Adaptation of the Right Ventricle in Experimental Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 479-489.	2.9	37
76	Reduced shear stress and associated aortic deformation in the thoracic aorta of patients with chronic obstructive pulmonary disease. Journal of Vascular Surgery, 2018, 68, 246-253.	1.1	5
77	A current view of G protein-coupled receptor - mediated signaling in pulmonary hypertension: finding opportunities for therapeutic intervention. Vessel Plus, 2018, 2, 29.	0.4	22
78	Inhaled sildenafil as an alternative to oral sildenafil in the treatment of pulmonary arterial hypertension (PAH). Journal of Controlled Release, 2017, 250, 96-106.	9.9	35
79	Cocktail of Superoxide Dismutase and Fasudil Encapsulated in Targeted Liposomes Slows PAH Progression at a Reduced Dosing Frequency. Molecular Pharmaceutics, 2017, 14, 830-841.	4.6	25
80	A Time- and Compartment-Specific Activation of Lung Macrophages in Hypoxic Pulmonary Hypertension. Journal of Immunology, 2017, 198, 4802-4812.	0.8	66
81	Identification of Infants at Risk for Chronic Lung Disease at Birth. Potential for a Personalized Approach to Disease Prevention. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 951-952.	5.6	3
82	TGF-β activation by bone marrow-derived thrombospondin-1 causes Schistosoma- and hypoxia-induced pulmonary hypertension. Nature Communications, 2017, 8, 15494.	12.8	102
83	Glycolysis and oxidative phosphorylation are essential for purinergic receptor-mediated angiogenic responses in vasa vasorum endothelial cells. American Journal of Physiology - Cell Physiology, 2017, 312, C56-C70.	4.6	48
84	Metabolic and Proliferative State of Vascular Adventitial Fibroblasts in Pulmonary Hypertension Is Regulated Through a MicroRNA-124/PTBP1 (Polypyrimidine Tract Binding Protein 1)/Pyruvate Kinase Muscle Axis. Circulation, 2017, 136, 2468-2485.	1.6	172
85	Identification of MicroRNA-124 as a Major Regulator of Enhanced Endothelial Cell Glycolysis in Pulmonary Arterial Hypertension via PTBP1 (Polypyrimidine Tract Binding Protein) and Pyruvate Kinase M2. Circulation, 2017, 136, 2451-2467.	1.6	195
86	Metabolic Reprogramming and Redox Signaling in Pulmonary Hypertension. Advances in Experimental Medicine and Biology, 2017, 967, 241-260.	1.6	13
87	A photoclickable peptide microarray platform for facile and rapid screening of 3-D tissue microenvironments. Biomaterials, 2017, 143, 17-28.	11.4	26
88	The Pulmonary Vascular Research Institute celebrates its first decade. Pulmonary Circulation, 2017, 7, 283-284.	1.7	0
89	Superoxide Dismutase 3 R213G Single-Nucleotide Polymorphism Blocks Murine Bleomycin-Induced Fibrosis and Promotes Resolution of Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 362-371.	2.9	28
90	Helicity and Vorticity of Pulmonary Arterial Flow in Patients With Pulmonary Hypertension: Quantitative Analysis of Flow Formations. Journal of the American Heart Association, 2017, 6, .	3.7	51

#	Article	IF	CITATIONS
91	Varicella zoster virus–infected cerebrovascular cells produce a proinflammatory environment. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e382.	6.0	22
92	Pro-oxidative Mitochondrial Metabolism of Bovine Arterial Wall Fibroblasts in Pulmonary Hypertension Syndrome can be Reversed by PTBP1 Silencing and Histone Deacetylase Inhibition. Free Radical Biology and Medicine, 2017, 112, 176-177.	2.9	0
93	Hemoglobin induced cell trauma indirectly influences endothelial TLR9 activity resulting in pulmonary vascular smooth muscle cell activation. PLoS ONE, 2017, 12, e0171219.	2.5	10
94	Impaired Critical Speed in Mice with Sickle Cell Anemia. Medicine and Science in Sports and Exercise, 2017, 49, 407-408.	0.4	0
95	Histone deacetylation contributes to low extracellular superoxide dismutase expression in human idiopathic pulmonary arterial hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L124-L134.	2.9	40
96	Transcription Factors, Transcriptional Coregulators, and Epigenetic Modulation in the Control of Pulmonary Vascular Cell Phenotype: Therapeutic Implications for Pulmonary Hypertension (2015) Tj ETQq0 0 0	rgBT. ‡ Ove	floc k 410 Tf 50
97	Endothelial-to-Mesenchymal Transition. Circulation, 2016, 133, 1734-1737.	1.6	79
98	Metabolic Reprogramming Regulates the Proliferative and Inflammatory Phenotype of Adventitial Fibroblasts in Pulmonary Hypertension Through the Transcriptional Corepressor C-Terminal Binding Protein-1. Circulation, 2016, 134, 1105-1121.	1.6	107
99	Unique Aspects of the Developing Lung Circulation: Structural Development and Regulation of Vasomotor Tone. Pulmonary Circulation, 2016, 6, 407-425.	1.7	39
100	Our Readership Grows by Leaps and Bounds. Pulmonary Circulation, 2016, 6, 405-406.	1.7	0
101	Right Ventricular Longitudinal Strain Is Depressed in a Bovine Model of Pulmonary Hypertension. Anesthesia and Analgesia, 2016, 122, 1280-1286.	2.2	4
102	Pulmonary Veno-occlusive Disease and Pulmonary Hypertension in Dogs. Veterinary Pathology, 2016, 53, 707-710.	1.7	5
103	Pulmonary Arterial Stiffness: Toward a New Paradigm in Pulmonary Arterial Hypertension Pathophysiology and Assessment. Current Hypertension Reports, 2016, 18, 4.	3.5	51
104	Constitutive Reprogramming of Fibroblast Mitochondrial Metabolism in Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 47-57.	2.9	59
105	The Effects of Chronic Hypoxia on Inflammation and Pulmonary Vascular Function. , 2016, , 83-103.		1
106	Pediatric Pulmonary Hypertension. Circulation, 2015, 132, 2037-2099.	1.6	879
107	Hemoglobin-induced lung vascular oxidation, inflammation, and remodeling contribute to the progression of hypoxic pulmonary hypertension and is attenuated in rats with repeated-dose haptoglobin administration. Free Radical Biology and Medicine, 2015, 82, 50-62.	2.9	50
108	Chemotherapy-Induced Pulmonary Hypertension. American Journal of Pathology, 2015, 185, 356-371.	3.8	149

#	Article	IF	CITATIONS
109	The role of inflammation in hypoxic pulmonary hypertension: from cellular mechanisms to clinical phenotypes. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L229-L252.	2.9	158
110	Circulating microRNA as a biomarker for recovery in pediatric dilated cardiomyopathy. Journal of Heart and Lung Transplantation, 2015, 34, 724-733.	0.6	65
111	Mitochondrial integrity in a neonatal bovine model of right ventricular dysfunction. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L158-L167.	2.9	17
112	Hypoxic Pulmonary Hypertension. , 2015, , 4169-4209.		1
113	Increased prevalence of EPAS1 variant in cattle with high-altitude pulmonary hypertension. Nature Communications, 2015, 6, 6863.	12.8	69
114	Emerging Roles for Histone Deacetylases in Pulmonary Hypertension and Right Ventricular Remodeling (2013 Grover Conference series). Pulmonary Circulation, 2015, 5, 63-72.	1.7	26
115	Differential regulation of matrix metalloproteinases in varicella zoster virus-infected human brain vascular adventitial fibroblasts. Journal of the Neurological Sciences, 2015, 358, 444-446.	0.6	11
116	The zinc transporter ZIP12 regulates the pulmonary vascular response to chronic hypoxia. Nature, 2015, 524, 356-360.	27.8	113
117	Coming to terms with tissue engineering and regenerative medicine in the lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L625-L638.	2.9	35
118	Contribution of metabolic reprogramming to macrophage plasticity and function. Seminars in Immunology, 2015, 27, 267-275.	5.6	150
119	MicroRNA-143 Activation Regulates Smooth Muscle and Endothelial Cell Crosstalk in Pulmonary Arterial Hypertension. Circulation Research, 2015, 117, 870-883.	4.5	246
120	Leukotriene B ₄ Activates Pulmonary Artery Adventitial Fibroblasts in Pulmonary Hypertension. Hypertension, 2015, 66, 1227-1239.	2.7	62
121	Metabolic reprogramming and inflammation act in concert to control vascular remodeling in hypoxic pulmonary hypertension. Journal of Applied Physiology, 2015, 119, 1164-1172.	2.5	76
122	Stiffening-Induced High Pulsatility Flow Activates Endothelial Inflammation via a TLR2/NF-κB Pathway. PLoS ONE, 2014, 9, e102195.	2.5	39
123	Biomarkers for Pediatric Pulmonary Arterial Hypertension – A Call to Collaborate. Frontiers in Pediatrics, 2014, 2, 7.	1.9	27
124	Vascular Stiffening in Pulmonary Hypertension: Cause or Consequence? (2013 Grover Conference) Tj ETQq0 0 C) rgBT /Ove	erlock 10 Tf 5
	High proliferative potential endothelial colony-forming cells contribute to hypoxia-induced		

125	pulmonary artery vasa vasorum neovascularization. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L661-L671.	2.9	25
126	Adventitial Fibroblasts Induce a Distinct Proinflammatory/Profibrotic Macrophage Phenotype in Pulmonary Hypertension. Journal of Immunology, 2014, 193, 597-609.	0.8	162

#	Article	IF	CITATIONS
127	Aberrant Chloride Intracellular Channel 4 Expression Contributes to Endothelial Dysfunction in Pulmonary Arterial Hypertension. Circulation, 2014, 129, 1770-1780.	1.6	63
128	Class I HDACs regulate angiotensin II-dependent cardiac fibrosis via fibroblasts and circulating fibrocytes. Journal of Molecular and Cellular Cardiology, 2014, 67, 112-125.	1.9	146
129	Selective depletion of vascular EC-SOD augments chronic hypoxic pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L868-L876.	2.9	38
130	Gene expression and \hat{l}^2 -adrenergic signaling are altered in hypoplastic left heart syndrome. Journal of Heart and Lung Transplantation, 2014, 33, 785-793.	0.6	32
131	MicroRNA-124 Controls the Proliferative, Migratory, and Inflammatory Phenotype of Pulmonary Vascular Fibroblasts. Circulation Research, 2014, 114, 67-78.	4.5	178
132	An Official American Thoracic Society Statement: Pulmonary Hypertension Phenotypes. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 345-355.	5.6	70
133	Is Uric Acid an Underdiagnosed Mediator of Adverse Outcome in Metabolically Healthy Overweight/Obese Individuals?. American Journal of Medicine, 2014, 127, e21.	1.5	2
134	Hypoxic Pulmonary Hypertension. , 2014, , 1-49.		0
135	Abstract 11636: Right Ventricle Lymphatic Vessel Insufficiency Contributes to Interstitial Fluid Stasis, Inflammation, Fibrosis, and Failure in Pulmonary Hypertension. Circulation, 2014, 130, .	1.6	0
136	High Pulsatility Flow Induces Acute Endothelial Inflammation Through Overpolarizing Cells to Activate NF-κB. Cardiovascular Engineering and Technology, 2013, 4, 26-38.	1.6	40
137	Bronchus-associated Lymphoid Tissue in Pulmonary Hypertension Produces Pathologic Autoantibodies. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1126-1136.	5.6	64
138	Relevant Issues in the Pathology and Pathobiology of Pulmonary Hypertension. Journal of the American College of Cardiology, 2013, 62, D4-D12.	2.8	465
139	The Adventitia: Essential Regulator of Vascular Wall Structure and Function. Annual Review of Physiology, 2013, 75, 23-47.	13.1	324
140	Cellular, Pharmacological, and Biophysical Evaluation of Explanted Lungs from a Patient with Sickle Cell Disease and Severe Pulmonary Arterial Hypertension. Pulmonary Circulation, 2013, 3, 936-951.	1.7	22
141	Clinical Trials in Neonates and Children: Report of the Pulmonary Hypertension Academic Research Consortium Pediatric Advisory Committee. Pulmonary Circulation, 2013, 3, 252-266.	1.7	35
142	MAP kinase kinase kinase-2 (MEKK2) regulates hypertrophic remodeling of the right ventricle in hypoxia-induced pulmonary hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H269-H281.	3.2	28
143	High pulsatility flow stimulates smooth muscle cell hypertrophy and contractile protein expression. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 304, L70-L81.	2.9	49
144	Hypertension, Nitrate-Nitrite, and Xanthine Oxidoreductase Catalyzed Nitric Oxide Generation: Pros and Cons. Hypertension, 2013, 62, e9.	2.7	6

#	Article	IF	CITATIONS
145	Anticipated Classes of New Medications and Molecular Targets for Pulmonary Arterial Hypertension. Pulmonary Circulation, 2013, 3, 226-244.	1.7	40
146	Response to Letter Regarding Article, "Histone Deacetylation Inhibition in Pulmonary Hypertension: Therapeutic Potential of Valproic Acid and Suberoylanilide Hydroxamic Acid― Circulation, 2013, 127, e540.	1.6	5
147	The Renin–Angiotensin System in Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 1138-1139.	5.6	12
148	Mechanics and Mechanisms of Pulmonary Hypertension: An Introduction to the 55th Annual Thomas L. Petty Aspen Lung Conference. Pulmonary Circulation, 2013, 3, 127-127.	1.7	0
149	Adenosine A1 Receptors Promote Vasa Vasorum Endothelial Cell Barrier Integrity via Gi and Akt-Dependent Actin Cytoskeleton Remodeling. PLoS ONE, 2013, 8, e59733.	2.5	28
150	Targeting the Adventitial Microenvironment in Pulmonary Hypertension: A Potential Approach to Therapy that Considers Epigenetic Change. Pulmonary Circulation, 2012, 2, 3-14.	1.7	47
151	Activation of the Unfolded Protein Response is Associated with Pulmonary Hypertension. Pulmonary Circulation, 2012, 2, 229-240.	1.7	38
152	Selective Class I Histone Deacetylase Inhibition Suppresses Hypoxia-Induced Cardiopulmonary Remodeling Through an Antiproliferative Mechanism. Circulation Research, 2012, 110, 739-748.	4.5	152
153	Free hemoglobin induction of pulmonary vascular disease: evidence for an inflammatory mechanism. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L312-L326.	2.9	45
154	Hypoxia induces unique proliferative response in adventitial fibroblasts by activating PDGFÎ ² receptor-JNK1 signalling. Cardiovascular Research, 2012, 95, 356-365.	3.8	39
155	Eph-A2 Promotes Permeability and Inflammatory Responses to Bleomycin-Induced Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 40-47.	2.9	55
156	Osteopontin is an endogenous modulator of the constitutively activated phenotype of pulmonary adventitial fibroblasts in hypoxic pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L1-L11.	2.9	56
157	Histone Deacetylation Inhibition in Pulmonary Hypertension. Circulation, 2012, 126, 455-467.	1.6	222
158	Circulating Myeloid-Derived Suppressor Cells Are Increased and Activated in Pulmonary Hypertension. Chest, 2012, 141, 944-952.	0.8	35
159	Mechanics and Function of the Pulmonary Vasculature: Implications for Pulmonary Vascular Disease and Right Ventricular Function. , 2012, 2, 295-319.		61
160	Hypoxia-inducible factor-1 alpha–dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2784-93.	7.1	455
161	Smooth Muscle in the Normal and Diseased Pulmonary Circulation. , 2012, , 1347-1358.		1
162	"Bioengineering the lung: molecules, materials, matrix, morphology, and mechanics― American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L361-L362.	2.9	7

#	Article	IF	CITATIONS
163	Impact of Residual Stretch and Remodeling on Collagen Engagement in Healthy and Pulmonary Hypertensive Calf Pulmonary Arteries at Physiological Pressures. Annals of Biomedical Engineering, 2012, 40, 1419-1433.	2.5	20
164	Pulmonary hypertension induced right heart failure: species comparison of global and local inflammatory responses. FASEB Journal, 2012, 26, 873.24.	0.5	0
165	The inflammatoryâ€fibrotic phenotype of right ventricular cardiac fibroblasts in hypoxiaâ€induced pulmonary hypertension. FASEB Journal, 2012, 26, .	0.5	0
166	The Adventitia: Essential Role in Pulmonary Vascular Remodeling. , 2011, 1, 141-161.		70
167	Xanthine Oxidase-Derived ROS Upregulate Egr-1 via ERK1/2 in PA Smooth Muscle Cells; Model to Test Impact of Extracellular ROS in Chronic Hypoxia. PLoS ONE, 2011, 6, e27531.	2.5	65
168	Chronic hypoxia impairs extracellular nucleotide metabolism and barrier function in pulmonary artery vasa vasorum endothelial cells. Angiogenesis, 2011, 14, 503-513.	7.2	38
169	Complementary effects of extracellular nucleotides and platelet-derived extracts on angiogenesis of vasa vasorum endothelial cells in vitro and subcutaneous Matrigel plugs in vivo. Vascular Cell, 2011, 3, 4.	0.2	13
170	Physiologic and molecular consequences of endothelial Bmpr2 mutation. Respiratory Research, 2011, 12, 84.	3.6	54
171	Lung Extracellular Superoxide Dismutase Overexpression Lessens Bleomycin-Induced Pulmonary Hypertension and Vascular Remodeling. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 500-508.	2.9	64
172	Emergence of Fibroblasts with a Proinflammatory Epigenetically Altered Phenotype in Severe Hypoxic Pulmonary Hypertension. Journal of Immunology, 2011, 187, 2711-2722.	0.8	194
173	Biochemical and myofilament responses of the right ventricle to severe pulmonary hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H832-H840.	3.2	22
174	Cell-based therapies in pulmonary hypertension: who, what, and when?. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 301, L9-L11.	2.9	7
175	Progenitor Cells in Pulmonary Vascular Remodeling. Pulmonary Circulation, 2011, 1, 3-16.	1.7	79
176	P2Y1 and P2Y13 purinergic receptors mediate Ca ²⁺ signaling and proliferative responses in pulmonary artery vasa vasorum endothelial cells. American Journal of Physiology - Cell Physiology, 2011, 300, C266-C275.	4.6	49
177	Functional Classification of Pulmonary Hypertension in Children: Report from the PVRI Pediatric Taskforce, Panama 2011. Pulmonary Circulation, 2011, 1, 280-285.	1.7	92
178	A Consensus Approach to the Classification of Pediatric Pulmonary Hypertensive Vascular Disease: Report from the PVRI Pediatric Taskforce, Panama 2011. Pulmonary Circulation, 2011, 1, 286-298.	1.7	215
179	Emerging therapies for the treatment of pulmonary hypertension. Pediatric Critical Care Medicine, 2010, 11, S85-S90.	0.5	43
180	Sustained lung activity of a novel chimeric protein, SOD2/3, after intratracheal administration. Free Radical Biology and Medicine, 2010, 49, 2032-2039.	2.9	12

#	Article	IF	CITATIONS
181	In vivo measurement of proximal pulmonary artery elastic modulus in the neonatal calf model of pulmonary hypertension: development and ex vivo validation. Journal of Applied Physiology, 2010, 108, 968-975.	2.5	42
182	Strategic Plan for Lung Vascular Research. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 1554-1562.	5.6	73
183	Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L1013-L1032.	2.9	645
184	Sustained hypoxia promotes the development of a pulmonary artery-specific chronic inflammatory microenvironment. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L238-L250.	2.9	137
185	Prostacyclin Inhibits IFN-γ-Stimulated Cytokine Expression by Reduced Recruitment of CBP/p300 to STAT1 in a SOCS-1-Independent Manner. Journal of Immunology, 2009, 183, 6981-6988.	0.8	29
186	Effects of Pathological Flow on Pulmonary Artery Endothelial Production of Vasoactive Mediators and Growth Factors. Journal of Vascular Research, 2009, 46, 561-571.	1.4	63
187	Sustained hypoxia leads to the emergence of cells with enhanced growth, migratory, and promitogenic potentials within the distal pulmonary artery wall. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L1059-L1072.	2.9	61
188	PI3K, Rho, and ROCK play a key role in hypoxia-induced ATP release and ATP-stimulated angiogenic responses in pulmonary artery vasa vasorum endothelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L954-L964.	2.9	42
189	High Pulsatility Flow Induces Adhesion Molecule and Cytokine mRNA Expression in Distal Pulmonary Artery Endothelial Cells. Annals of Biomedical Engineering, 2009, 37, 1082-1092.	2.5	93
190	Inflammation, Growth Factors, and Pulmonary Vascular Remodeling. Journal of the American College of Cardiology, 2009, 54, S10-S19.	2.8	605
191	Cellular and Molecular Basis of Pulmonary Arterial Hypertension. Journal of the American College of Cardiology, 2009, 54, S20-S31.	2.8	714
192	PI3K and RhoA/ROCK pathways play a critical role in hypoxiaâ€induced ATP exocytosis and ATPâ€induced angiogenic responses in pulmonary artery vasa vasorum endothelial cells. FASEB Journal, 2009, 23, 634.4.	0.5	0
193	Extracellular ATP is a pro-angiogenic factor for pulmonary artery vasa vasorum endothelial cells. Angiogenesis, 2008, 11, 169-182.	7.2	62
194	Changes in the structure-function relationship of elastin and its impact on the proximal pulmonary arterial mechanics of hypertensive calves. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H1451-H1459.	3.2	127
195	Lung EC-SOD overexpression attenuates hypoxic induction of Egr-1 and chronic hypoxic pulmonary vascular remodeling. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L422-L430.	2.9	111
196	Hypoxia exposure induces the emergence of fibroblasts lacking replication repressor signals of PKCÂ in the pulmonary artery adventitia. Cardiovascular Research, 2008, 78, 440-448.	3.8	43
197	Lung Vascular Cell Heterogeneity: Endothelium, Smooth Muscle, and Fibroblasts. Proceedings of the American Thoracic Society, 2008, 5, 783-791.	3.5	94
198	Circulating Bone Marrowâ€Derived Mesenchymal Precursors Robustly Contribute to Lung Vascular Remodeling in Pathogenesis of Pulmonary Hypertension. FASEB Journal, 2008, 22, 710.12.	0.5	0

#	Article	IF	CITATIONS
199	Specialized Center in Clinical Oriented Research (SCCOR) Update: Mechanisms and Treatment of Lung Vascular Disease in Infants and Children. Advances in Pulmonary Hypertension, 2008, 7, 341-342.	0.1	0
200	Rosiglitazone attenuates hypoxia-induced pulmonary arterial remodeling. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L885-L897.	2.9	152
201	Perspectives on endothelial-to-mesenchymal transition: potential contribution to vascular remodeling in chronic pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L1-L8.	2.9	304
202	Role of Reactive Oxygen Species in Chronic Hypoxia-Induced Pulmonary Hypertension and Vascular Remodeling. Advances in Experimental Medicine and Biology, 2007, 618, 101-112.	1.6	59
203	Measurement of In-Vivo Pulmonary Vascular Impedance in Two Animal Models of Pulmonary Hypertension. , 2007, , .		0
204	Contribution of Elastin to the Mechanical Properties of Arterial Tissues. , 2007, , .		0
205	Hypoxia-Induced Pulmonary Vascular Remodeling. Circulation Research, 2006, 99, 675-691.	4.5	876
206	Hypoxia-Induced Pulmonary Vascular Remodeling Requires Recruitment of Circulating Mesenchymal Precursors of a Monocyte/Macrophage Lineage. American Journal of Pathology, 2006, 168, 659-669.	3.8	384
207	Pulmonary Artery Adventitial Fibroblasts Cooperate with Vasa Vasorum Endothelial Cells to Regulate Vasa Vasorum Neovascularization. American Journal of Pathology, 2006, 168, 1793-1807.	3.8	80
208	Protein Kinase Cζ Attenuates Hypoxia-induced Proliferation of Fibroblasts by Regulating MAP Kinase Phosphatase-1 Expression. Molecular Biology of the Cell, 2006, 17, 1995-2008.	2.1	30
209	Embryonic Growth-Associated Protein Is One Subunit of a Novel N-Terminal Acetyltransferase Complex Essential for Embryonic Vascular Development. Circulation Research, 2006, 98, 846-855.	4.5	26
210	Role of the Adventitia in Pulmonary Vascular Remodeling. Physiology, 2006, 21, 134-145.	3.1	200
211	Perspectives on Endothelial to Mesenchymal Transition. FASEB Journal, 2006, 20, A415.	0.5	0
212	Extracellular Adenosine Triphosphate. Chest, 2005, 128, 608S-610S.	0.8	9
213	Hypoxia, leukocytes, and the pulmonary circulation. Journal of Applied Physiology, 2005, 98, 715-721.	2.5	106
214	Egr-1 antisense oligonucleotides inhibit hypoxia-induced proliferation of pulmonary artery adventitial fibroblasts. Journal of Applied Physiology, 2005, 98, 732-738.	2.5	47
215	Activation of phosphatidylinositol 3-kinase, Akt, and mammalian target of rapamycin is necessary for hypoxia-induced pulmonary artery adventitial fibroblast proliferation. Journal of Applied Physiology, 2005, 98, 722-731.	2.5	63
216	Angiogenic Therapy for Bronchopulmonary Dysplasia. Circulation, 2005, 112, 2383-2385.	1.6	12

Kurt R Stenmark

#	Article	IF	CITATIONS
217	Extracellular ATP-induced Proliferation of Adventitial Fibroblasts Requires Phosphoinositide 3-Kinase, Akt, Mammalian Target of Rapamycin, and p70 S6 Kinase Signaling Pathways. Journal of Biological Chemistry, 2005, 280, 1838-1848.	3.4	63
218	Hypoxia-Induced Alterations in Protein Kinase Cζ Signaling Result in Augmented Fibroblast Proliferation. Chest, 2005, 128, 582S.	0.8	5
219	Vascular Remodeling Versus Vasoconstriction in Chronic Hypoxic Pulmonary Hypertension. Circulation Research, 2005, 97, 95-98.	4.5	123
220	Connective tissue growth factor expression is increased in biliary epithelial cells in biliary atresia. Journal of Pediatric Surgery, 2005, 40, 1721-1725.	1.6	27
221	LUNG VASCULAR DEVELOPMENT: Implications for the Pathogenesis of Bronchopulmonary Dysplasia. Annual Review of Physiology, 2005, 67, 623-661.	13.1	350
222	Unique, Highly Proliferative Growth Phenotype Expressed by Embryonic and Neointimal Smooth Muscle Cells Is Driven by Constitutive Akt, mTOR, and p70S6K Signaling and Is Actively Repressed by PTEN. Circulation, 2004, 109, 1299-1306.	1.6	76
223	Distinct aerobic and hypoxic mechanisms of HIF-Â regulation by CSN5. Genes and Development, 2004, 18, 739-744.	5.9	62
224	Cellular and molecular pathobiology of pulmonary arterial hypertension. Journal of the American College of Cardiology, 2004, 43, S13-S24.	2.8	1,322
225	Predisposition of infants with chronic lung disease to respiratory syncytial virus-induced respiratory failure: a vascular hypothesis. Pediatric Infectious Disease Journal, 2004, 23, S33-S40.	2.0	37
226	Hypoxia induces differentiation of pulmonary artery adventitial fibroblasts into myofibroblasts. American Journal of Physiology - Cell Physiology, 2004, 286, C416-C425.	4.6	95
227	Hypoxia-induced pulmonary artery adventitial remodeling and neovascularization: contribution of progenitor cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 286, L668-L678.	2.9	211
228	Induction of SM-α-actin expression by mechanical strain in adult vascular smooth muscle cells is mediated through activation of JNK and p38 MAP kinase. Biochemical and Biophysical Research Communications, 2003, 301, 1116-1121.	2.1	60
229	Endothelin B Receptor Deficiency Predisposes to Pulmonary Edema Formation via Increased Lung Vascular Endothelial Cell Growth Factor Expression. Circulation Research, 2003, 93, 456-463.	4.5	41
230	Hypoxia Protects Human Lung Microvascular Endothelial and Epithelial-like Cells against Oxygen Toxicity. American Journal of Respiratory Cell and Molecular Biology, 2003, 28, 179-187.	2.9	36
231	Lung Vascular Development. American Journal of Respiratory Cell and Molecular Biology, 2003, 28, 133-137.	2.9	44
232	Bovine distal pulmonary arterial media is composed of a uniform population of well-differentiated smooth muscle cells with low proliferative capabilities. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L819-L828.	2.9	45
233	Extracellular ATP Is an Autocrine/Paracrine Regulator of Hypoxia-induced Adventitial Fibroblast Growth. Journal of Biological Chemistry, 2002, 277, 44638-44650.	3.4	116
234	Hypoxic Activation of Adventitial Fibroblasts*. Chest, 2002, 122, 326S-334S.	0.8	142

#	Article	IF	CITATIONS
235	Mature Vascular Endothelium Can Give Rise to Smooth Muscle Cells via Endothelial-Mesenchymal Transdifferentiation. Circulation Research, 2002, 90, 1189-1196.	4.5	376
236	Hypoxia decreases lung neprilysin expression and increases pulmonary vascular leak. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L941-L948.	2.9	67
237	Cell-, age-, and phenotype-dependent differences in the control of gene expression. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L762-L765.	2.9	2
238	Hypoxia Induces Non-Ligand–Dependent Activation of Mitogen-Activated Protein Kinases in Pulmonary Artery Adventitial Fibroblasts. Chest, 2001, 120, S74.	0.8	1
239	Connective Tissue Growth Factor Expression in Pediatric Myofibroblastic Tumors. Pediatric and Developmental Pathology, 2001, 4, 37-45.	1.0	25
240	cAMP Response Element-binding Protein Content Is a Molecular Determinant of Smooth Muscle Cell Proliferation and Migration. Journal of Biological Chemistry, 2001, 276, 46132-46141.	3.4	132
241	Hypoxia-induced Proliferative Response of Vascular Adventitial Fibroblasts Is Dependent on G Protein-mediated Activation of Mitogen-activated Protein Kinases. Journal of Biological Chemistry, 2001, 276, 15631-15640.	3.4	105
242	New Hope for the Treatment of Pulmonary Hypertension: Novel Approaches to a Complex Disease. Pediatric Research, 2000, 48, 421-421.	2.3	3
243	Transient reexpression of an embryonic autonomous growth phenotype by adult carotid artery smooth muscle cells after vascular injury. Journal of Cellular Physiology, 2000, 182, 12-23.	4.1	26
244	Myocyte cytoskeletal disorganization and right heart failure in hypoxia-induced neonatal pulmonary hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H1365-H1376.	3.2	28
245	Endothelin receptor blockade decreases lung water in young rats exposed to viral infection and hypoxia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L547-L554.	2.9	17
246	Chronic Hypoxia Induces Exaggerated Growth Responses in Pulmonary Artery Adventitial Fibroblasts. American Journal of Respiratory Cell and Molecular Biology, 2000, 22, 15-25.	2.9	62
247	Novel Embryonic Genes Are Preferentially Expressed by Autonomously Replicating Rat Embryonic and Neointimal Smooth Muscle Cells. Circulation Research, 2000, 87, 608-615.	4.5	15
248	Solitary Renal Myofibromatosis: An Unusual Cause of Infantile Hypertension. Pediatrics, 1999, 103, e66-e66.	2.1	8
249	Relationship between Perlecan and Tropoelastin Gene Expression and Cell Replication in the Developing Rat Pulmonary Vasculature. American Journal of Respiratory Cell and Molecular Biology, 1999, 20, 24-34.	2.9	23
250	Hypoxia Induces Cell-Specific Changes in Gene Expression in Vascular Wall Cells: Implications for Pulmonary Hypertension. Advances in Experimental Medicine and Biology, 1999, 474, 231-258.	1.6	19
251	Subendothelial Cells From Normal Bovine Arteries Exhibit Autonomous Growth and Constitutively Activated Intracellular Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 2884-2893.	2.4	39
252	Respiratory Syncytial Virus Infects the Bonnet Monkey,Macaca radiata. Pediatric and Developmental Pathology, 1999, 2, 316-326.	1.0	31

#	Article	IF	CITATIONS
253	Contribution of Unique SMC Subpopulations to Vascular Disease. Journal of Vascular and Interventional Radiology, 1999, 10, 947-949.	0.5	0
254	Treatments for severe pulmonary hypertension. Lancet, The, 1999, 353, 338-340.	13.7	24
255	Mechanisms of Structural Remodeling in Chronic Pulmonary Hypertension. Pediatrics in Review, 1999, 20, e91-e102.	0.4	18
256	Hypoxia Stimulates Proliferation of a Unique Cell Population Isolated From the Bovine Vascular Media. Chest, 1998, 114, 28S-29S.	0.8	4
257	Hypoxic Growth of Bovine Pulmonary Artery Smooth Muscle Cells. Chest, 1998, 114, 29S-30S.	0.8	12
258	Smooth Muscle Cell Heterogeneity. Chest, 1998, 114, 82S-90S.	0.8	24
259	Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 275, L818-L826.	2.9	223
260	Selected isozymes of PKC contribute to augmented growth of fetal and neonatal bovine PA adventitial fibroblasts. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1997, 273, L1276-L1284.	2.9	12
261	Smooth Muscle Cell Heterogeneity in Pulmonary and Systemic Vessels. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 1203-1209.	2.4	116
262	The Mitogenic Effects of the Bβ Chain of Fibrinogen Are Mediated through Cell Surface Calreticulin. Journal of Biological Chemistry, 1995, 270, 26602-26606.	3.4	73
263	Enhanced growth capacity of neonatal pulmonary artery smooth muscle cells in vitro: Dependence on cell size, time from birth, insulinâ€like growth factor I, and autoâ€activation of protein Kinase C. Journal of Cellular Physiology, 1994, 160, 469-481.	4.1	47
264	Insulin-like Growth Factor I and Pulmonary Hypertension Induced by Continuous Air Embolization in Sheep. American Journal of Respiratory Cell and Molecular Biology, 1992, 6, 82-87.	2.9	40
265	Cellular adaptation during chronic neonatal hypoxic pulmonary hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 1991, 261, 97-104.	3.2	3
266	Connective Tissue Production by Vascular Smooth Muscle in Development and Disease. Chest, 1991, 99, 43S-47S.	0.8	26
267	Hypoxia-induced Inhibition of Tropoelastin Synthesis by Neonatal Calf Pulmonary Artery Smooth Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 1991, 5, 464-469.	2.9	17
268	Unilateral Pulmonary Hypertension as a Result of Chronic High Flow to One Lung. The American Review of Respiratory Disease, 1990, 142, 230-233.	2.9	9
269	Insulin-Like growth factor I and protein kinase C activation stimulate pulmonary artery smooth muscle cell proliferation through separate but synergistic pathways. Journal of Cellular Physiology, 1990, 144, 159-165.	4.1	46
270	Regulation of Collagen Production by Medial Smooth Muscle Cells in Hypoxic Pulmonary Hypertension. The American Review of Respiratory Disease, 1989, 140, 1045-1051.	2.9	37

#	Article	IF	CITATIONS
271	Decreased Arterial Wall Prostaglandin Production in Neonatal Calves with Severe Chronic Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 1989, 1, 489-498.	2.9	66
272	Response of Lobar Vessels to Hypoxic Pulmonary Hypertension. The American Review of Respiratory Disease, 1989, 140, 1455-1457.	2.9	15
273	Vascular Remodeling in Neonatal Pulmonary Hypertension. Chest, 1988, 93, 127S-133S.	0.8	19
274	Potential Role of Eicosanoids and PAF in the Pathophysiology of Bronchopulmonary Dysplasia. The American Review of Respiratory Disease, 1987, 136, 770-772.	2.9	74
275	Analysis of leukotriene B4 in human lung lavage by HPLC and mass spectrometry. Prostaglandins, 1986, 31, 227-237.	1.2	26
276	Diethylcarbamazine Inhibits Acute and Chronic Hypoxic Pulmonary Hypertension in Awake Rats. The American Review of Respiratory Disease, 1985, 131, 488-492.	2.9	52
277	Leukotriene C ₄ and D ₄ in Neonates with Hypoxemia and Pulmonary Hypertension. New England Journal of Medicine, 1983, 309, 77-80.	27.0	185
278	Mesenchymal–Endothelial Interactions in the Control of Angiogenic, Inflammatory, and Fibrotic Responses in the Pulmonary Circulation. , 0, , 167-183.		0
279	Single Cell RNA Sequencing and Binary Hierarchical Clustering Defines Lung Interstitial Macrophage Heterogeneity in Response to Hypoxia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 0, , .	2.9	1