Andreas Hougaard Laustsen-Kiel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/918157/publications.pdf

Version: 2024-02-01

70 papers

2,516 citations

172457 29 h-index 214800 47 g-index

85 all docs 85 docs citations

85 times ranked 1656 citing authors

#	Article	IF	CITATIONS
1	Causes and Consequences of Snake Venom Variation. Trends in Pharmacological Sciences, 2020, 41, 570-581.	8.7	185
2	Basics of Antibody Phage Display Technology. Toxins, 2018, 10, 236.	3.4	142
3	Pros and cons of different therapeutic antibody formats for recombinant antivenom development. Toxicon, 2018, 146, 151-175.	1.6	125
4	Bee Updated: Current Knowledge on Bee Venom and Bee Envenoming Therapy. Frontiers in Immunology, 2019, 10, 2090.	4.8	104
5	Unveiling the nature of black mamba (Dendroaspis polylepis) venom through venomics and antivenom immunoprofiling: Identification of key toxin targets for antivenom development. Journal of Proteomics, 2015, 119, 126-142.	2.4	102
6	From Fangs to Pharmacology: The Future of Snakebite Envenoming Therapy. Current Pharmaceutical Design, 2016, 22, 5270-5293.	1.9	101
7	Exploring the venom of the forest cobra snake: Toxicovenomics and antivenom profiling of Naja melanoleuca. Journal of Proteomics, 2017, 150, 98-108.	2.4	85
8	History of Envenoming Therapy and Current Perspectives. Frontiers in Immunology, 2019, 10, 1598.	4.8	77
9	Selecting key toxins for focused development of elapid snake antivenoms and inhibitors guided by a Toxicity Score. Toxicon, 2015, 104, 43-45.	1.6	75
10	Animal Immunization, in Vitro Display Technologies, and Machine Learning for Antibody Discovery. Trends in Biotechnology, 2021, 39, 1263-1273.	9.3	74
11	In vivo neutralization of dendrotoxin-mediated neurotoxicity of black mamba venom by oligoclonal human IgG antibodies. Nature Communications, 2018, 9, 3928.	12.8	73
12	Toxicovenomics and antivenom profiling of the Eastern green mamba snake (Dendroaspis angusticeps) Tj ETQqQ	00 rgBT 2.4	Oyerlock 10
13	Biosynthetic Oligoclonal Antivenom (BOA) for Snakebite and Next-Generation Treatments for Snakebite Victims. Toxins, 2018, 10, 534.	3.4	64
14	Recombinant snakebite antivenoms: A cost-competitive solution to a neglected tropical disease?. PLoS Neglected Tropical Diseases, 2017, 11, e0005361.	3.0	64
15	Scorpion Venom: Detriments and Benefits. Biomedicines, 2020, 8, 118.	3.2	62
16	Advances in antibody phage display technology. Drug Discovery Today, 2022, 27, 2151-2169.	6.4	62
17	Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins. Toxicon, 2015, 99, 23-35.	1.6	60
18	Innovative Immunization Strategies for Antivenom Development. Toxins, 2018, 10, 452.	3.4	58

#	Article	IF	CITATIONS
19	Biotechnological Trends in Spider and Scorpion Antivenom Development. Toxins, 2016, 8, 226.	3.4	55
20	Snakebite Envenoming Diagnosis and Diagnostics. Frontiers in Immunology, 2021, 12, 661457.	4.8	46
21	Recent Advances in Next Generation Snakebite Antivenoms. Tropical Medicine and Infectious Disease, 2018, 3, 42.	2.3	45
22	Guiding recombinant antivenom development by omics technologies. New Biotechnology, 2018, 45, 19-27.	4.4	44
23	Toxin synergism in snake venoms. Toxin Reviews, 2016, 35, 165-170.	3.4	43
24	Engineering and design considerations for next-generation snakebite antivenoms. Toxicon, 2019, 167, 67-75.	1.6	43
25	Danger in the reef: Proteome, toxicity, and neutralization of the venom of the olive sea snake, Aipysurus laevis. Toxicon, 2015, 107, 187-196.	1.6	38
26	Current Knowledge on Snake Dry Bites. Toxins, 2020, 12, 668.	3.4	34
27	An in vitro methodology for discovering broadly-neutralizing monoclonal antibodies. Scientific Reports, 2020, 10, 10765.	3.3	34
28	High-throughput immuno-profiling of mamba (Dendroaspis) venom toxin epitopes using high-density peptide microarrays. Scientific Reports, 2016, 6, 36629.	3.3	33
29	Antibody Cross-Reactivity in Antivenom Research. Toxins, 2018, 10, 393.	3.4	33
30	Exploration of immunoglobulin transcriptomes from mice immunized with three-finger toxins and phospholipases A ₂ from the Central American coral snake, <i>Micrurus nigrocinctus</i> PeerJ, 2017, 5, e2924.	2.0	32
31	Toxin Neutralization Using Alternative Binding Proteins. Toxins, 2019, 11, 53.	3.4	30
32	Unity Makes Strength: Exploring Intraspecies and Interspecies Toxin Synergism between Phospholipases A2 and Cytotoxins. Frontiers in Pharmacology, 2020, 11, 611.	3.5	29
33	Cost of Manufacturing for Recombinant Snakebite Antivenoms. Frontiers in Bioengineering and Biotechnology, 2020, 8, 703.	4.1	26
34	Novel Snakebite Therapeutics Must Be Tested in Appropriate Rescue Models to Robustly Assess Their Preclinical Efficacy. Toxins, 2020, 12, 528.	3.4	24
35	Snakebites: costing recombinant antivenoms. Nature, 2016, 538, 41-41.	27.8	23
36	How can monoclonal antibodies be harnessed against neglected tropical diseases and other infectious diseases?. Expert Opinion on Drug Discovery, 2019, 14, 1103-1112.	5.0	23

#	Article	IF	CITATIONS
37	Clinical management of snakebite envenoming: Future perspectives. Toxicon: X, 2021, 11, 100079.	2.9	22
38	$\mbox{\ensuremath{\mbox{\scriptsize (i)}}}$ discovery of a human monoclonal antibody that neutralizes lethality of cobra snake venom. MAbs, 2022, 14, .	5.2	22
39	Integrating Engineering, Manufacturing, and Regulatory Considerations in the Development of Novel Antivenoms. Toxins, 2018, 10, 309.	3.4	21
40	Cross-recognition of a pit viper (Crotalinae) polyspecific antivenom explored through high-density peptide microarray epitope mapping. PLoS Neglected Tropical Diseases, 2017, 11, e0005768.	3.0	17
41	The rise of genomics in snake venom research: recent advances and future perspectives. GigaScience, 2022, 11, .	6.4	17
42	Toxin-centric development approach for next-generation antivenoms. Toxicon, 2018, 150, 195-197.	1.6	16
43	Strategies for Heterologous Expression, Synthesis, and Purification of Animal Venom Toxins. Frontiers in Bioengineering and Biotechnology, 2021, 9, 811905.	4.1	16
44	Peptide Inhibitors of the α-Cobratoxin–Nicotinic Acetylcholine Receptor Interaction. Journal of Medicinal Chemistry, 2020, 63, 13709-13718.	6.4	15
45	Pitfalls to avoid when using phage display for snake toxins. Toxicon, 2017, 126, 79-89.	1.6	14
46	High-density peptide microarray exploration of the antibody response in a rabbit immunized with a neurotoxic venom fraction. Toxicon, 2017, 138, 151-158.	1.6	12
47	Protease Activity Profiling of Snake Venoms Using High-Throughput Peptide Screening. Toxins, 2019, 11, 170.	3.4	11
48	Terrestrial venomous animals, the envenomings they cause, and treatment perspectives in the Middle East and North Africa. PLoS Neglected Tropical Diseases, 2021, 15, e0009880.	3.0	11
49	An interactive database for the investigation of high-density peptide microarray guided interaction patterns and antivenom cross-reactivity. PLoS Neglected Tropical Diseases, 2020, 14, e0008366.	3.0	10
50	Snake Venomics Display: An online toolbox for visualization of snake venomics data. Toxicon, 2018, 152, 60-64.	1.6	9
51	Identification of cross-reactive human single-chain variable fragments against phospholipases A2 from Lachesis muta and Bothrops spp venoms. Toxicon, 2020, 184, 116-121.	1.6	8
52	Crotalus Durissus Ruruima: Current Knowledge on Natural History, Medical Importance, and Clinical Toxinology. Frontiers in Immunology, 2021, 12, 659515.	4.8	8
53	Discovery of a Recombinant Human Monoclonal Immunoglobulin G Antibody Against \hat{l} ±-Latrotoxin From the Mediterranean Black Widow Spider (Latrodectus tredecimguttatus). Frontiers in Immunology, 2020, 11, 587825.	4.8	7
54	Editorial: Novel Immunotherapies Against Envenomings by Snakes and Other Venomous Animals. Frontiers in Immunology, 2020, 11 , 1004 .	4.8	7

#	Article	IF	CITATIONS
55	Unraveling the structure and function of CdcPDE: A novel phosphodiesterase from Crotalus durissus collilineatus snake venom. International Journal of Biological Macromolecules, 2021, 178, 180-192.	7. 5	7
56	Genomic Confirmation of the P-IIIe Subclass of Snake Venom Metalloproteinases and Characterisation of Its First Member, a Disintegrin-Like/Cysteine-Rich Protein. Toxins, 2022, 14, 232.	3.4	6
57	Orally active bivalent VHH construct prevents proliferation of F4+ enterotoxigenic Escherichia coli in weaned piglets. IScience, 2022, 25, 104003.	4.1	6
58	Do Antibiotics Potentiate Proteases in Hemotoxic Snake Venoms?. Toxins, 2020, 12, 240.	3.4	5
59	Chronic kidney failure following lancehead bite envenoming: a clinical report from the Amazon region. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2020, 26, e20200083.	1.4	5
60	Synthetic antibodies block receptor binding and currentâ€inhibiting effects of αâ€cobratoxin from <i>Naja kaouthia</i> . Protein Science, 2022, 31, e4296.	7.6	5
61	Black-necked spitting cobra (Naja nigricollis) phospholipases A2 may cause Trypanosoma brucei death by blocking endocytosis through the flagellar pocket. Scientific Reports, 2022, 12, 6394.	3.3	3
62	<i>In Vivo</i> Neutralization of Myotoxin II, a Phospholipase A ₂ Homologue from <i>Bothrops asper</i> Venom, Using Peptides Discovered via Phage Display Technology. ACS Omega, 2022, 7, 15561-15569.	3.5	3
63	The challenges with developing therapeutic monoclonal antibodies for pandemic application. Expert Opinion on Drug Discovery, 2022, 17, 5-8.	5.0	2
64	Discovery of human antibodies against forest cobra toxins. Toxicon, 2019, 158, S51-S52.	1.6	0
65	Design of scfab-based chimeric antibodies against Bothrops asper pi-metalloproteinase. Toxicon, 2019, 158, S41.	1.6	0
66	Harnessing phage display technology for discovery of human IgGs targeting clinically relevant toxins from the venom of the Central American coral snake (Micrurus nigrocinctus). Toxicon, 2019, 158, S45.	1.6	0
67	Harnessing human monoclonal antibodies for neutralisation of dendrotoxins in a murine model. Toxicon, 2019, 159, S14.	1.6	0
68	Recombinant antivenom against the venom of Dendroaspis polylepis. Toxicon, 2019, 158, S43.	1.6	0
69	Discovery of cross-reactive and recyclable human monoclonal antibodies for new recombinant antivenoms. Toxicon, 2020, 177, S38.	1.6	0
70	Discovery and evaluation of monoclonal antibodies for stratification of venoms from brazilian Bothrops, Crotalus, and Lachesis species. Toxicon, 2020, 177, S38.	1.6	0