
Monpichar Srisa-Art

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9180873/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microdroplets: A sea of applications?. Lab on A Chip, 2008, 8, 1244.	6.0	579
2	Electrochemistry on Paperâ€based Analytical Devices: A Review. Electroanalysis, 2016, 28, 1420-1436.	2.9	218
3	Highly Sensitive Detection of <i>Salmonella typhimurium</i> Using a Colorimetric Paper-Based Analytical Device Coupled with Immunomagnetic Separation. Analytical Chemistry, 2018, 90, 1035-1043.	6.5	172
4	Monitoring of Real-Time Streptavidinâ^'Biotin Binding Kinetics Using Droplet Microfluidics. Analytical Chemistry, 2008, 80, 7063-7067.	6.5	138
5	High-Throughput DNA Droplet Assays Using Picoliter Reactor Volumes. Analytical Chemistry, 2007, 79, 6682-6689.	6.5	134
6	Droplet microfluidics: from proof-of-concept to real-world utility?. Chemical Communications, 2019, 55, 9895-9903.	4.1	93
7	Graphene-polyaniline modified electrochemical droplet-based microfluidic sensor for high-throughput determination of 4-aminophenol. Analytica Chimica Acta, 2016, 925, 51-60.	5.4	72
8	Analysis of Protein–Protein Interactions by Using Dropletâ€Based Microfluidics. ChemBioChem, 2009, 10, 1605-1611.	2.6	60
9	Mapping of Fluidic Mixing in Microdroplets with 1 μs Time Resolution Using Fluorescence Lifetime Imaging. Analytical Chemistry, 2010, 82, 3950-3956.	6.5	47
10	Identification of rare progenitor cells from human periosteal tissue using droplet microfluidics. Analyst, The, 2009, 134, 2239.	3.5	45
11	Electrochemical droplet-based microfluidics using chip-based carbon paste electrodes for high-throughput analysis in pharmaceutical applications. Analytica Chimica Acta, 2015, 883, 45-54.	5.4	45
12	High-Efficiency Single-Molecule Detection within Trapped Aqueous Microdroplets. Journal of Physical Chemistry B, 2010, 114, 15766-15772.	2.6	32
13	Microfluidic approach for in situ synthesis of nanoporous silver microstructures as on-chip SERS substrates. Sensors and Actuators B: Chemical, 2018, 270, 466-474.	7.8	32
14	IR-Compatible PDMS microfluidic devices for monitoring of enzyme kinetics. Analytica Chimica Acta, 2018, 1021, 95-102.	5.4	29
15	Droplet-based glucosamine sensor using gold nanoparticles and polyaniline-modified electrode. Talanta, 2016, 158, 134-141.	5.5	23
16	Simple and Rapid Fabrication of PDMS Microfluidic Devices Compatible with FTIR Microspectroscopy. Bulletin of the Chemical Society of Japan, 2016, 89, 195-202.	3.2	12
17	Determination of Gibberellic Acid in Fermentation Broth and Commercial Products by Micellar Electrokinetic Chromatography. Journal of Agricultural and Food Chemistry, 2005, 53, 1884-1889.	5.2	11
18	Online preconcentration and determination of chondroitin sulfate, dermatan sulfate and hyaluronic acid in biological and cosmetic samples using capillary electrophoresis. Journal of Separation Science, 2019, 42, 2867-2874.	2.5	11

#	Article	IF	CITATIONS
19	Premature Senescence and Telomere Shortening Induced by Oxidative Stress From Oxalate, Calcium Oxalate Monohydrate, and Urine From Patients With Calcium Oxalate Nephrolithiasis. Frontiers in Immunology, 2021, 12, 696486.	4.8	9
20	PDMS-Based Microfluidic Device for Infrared-Transmission Spectro-Electrochemistry. Bulletin of the Chemical Society of Japan, 2018, 91, 728-734.	3.2	3
21	Clinical validation of urinary indole-reacted calcium oxalate crystallization index (iCOCI) test for diagnosing calcium oxalate urolithiasis. Scientific Reports, 2020, 10, 8334.	3.3	3
22	Calcium oxalate crystallization index (COCI): an alternative method for distinguishing nephrolithiasis patients from healthy individuals. Annals of Clinical and Laboratory Science, 2014, 44, 262-71.	0.2	3
23	Critical Components and Innovations in Paper-Based Analytical Devices. , 2019, , 47-87.		2
24	Cytotoxic responses of human chondrocytes to bupivacaine, levobupivacaine, and ropivacaine. Asian Biomedicine, 2019, 12, 169-178.	0.3	2
25	Droplet-Based Microfluidics for Binding Assays and Kinetics Based on FRET. Methods in Molecular Biology, 2013, 949, 231-240.	0.9	1