Avishai Dekel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9179764/publications.pdf

Version: 2024-02-01

244 papers

32,814 citations

2963 93 h-index 175 g-index

247 all docs

247 docs citations

times ranked

247

7405 citing authors

#	Article	IF	CITATIONS
1	CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY. Astrophysical Journal, Supplement Series, 2011, 197, 35.	3.0	1,590
2	CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEYâ€"THE ⟨i⟩ HUBBLE SPACE TELESCOPE⟨ i⟩ OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS. Astrophysical Journal, Supplement Series, 2011, 197, 36.	3.0	1,549
3	Galaxy bimodality due to cold flows and shock heating. Monthly Notices of the Royal Astronomical Society, 2006, 368, 2-20.	1.6	1,340
4	Cold streams in early massive hot haloes as the main mode of galaxy formation. Nature, 2009, 457, 451-454.	13.7	1,333
5	Concentrations of Dark Halos from Their Assembly Histories. Astrophysical Journal, 2002, 568, 52-70.	1.6	953
6	3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE-MASS DISTRIBUTION SINCE $\langle i \rangle z \langle j \rangle = 3$. Astrophysical Journal, 2014, 788, 28.	1.6	944
7	Virial shocks in galactic haloes?. Monthly Notices of the Royal Astronomical Society, 2003, 345, 349-364.	1.6	883
8	FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS. Astrophysical Journal, 2009, 703, 785-801.	1.6	774
9	MORPHOLOGICAL QUENCHING OF STAR FORMATION: MAKING EARLY-TYPE GALAXIES RED. Astrophysical Journal, 2009, 707, 250-267.	1.6	590
10	THE SINS SURVEY OF (i) z (i) $\hat{a}^{1/4}$ 2 GALAXY KINEMATICS: PROPERTIES OF THE GIANT STAR-FORMING CLUMPS. Astrophysical Journal, 2011, 733, 101.	1.6	511
11	THE IMPACT OF COLD GAS ACCRETION ABOVE A MASS FLOOR ON GALAXY SCALING RELATIONS. Astrophysical Journal, 2010, 718, 1001-1018.	1.6	483
12	A UNIVERSAL, LOCAL STAR FORMATION LAW IN GALACTIC CLOUDS, NEARBY GALAXIES, HIGH-REDSHIFT DISKS, AND STARBURSTS. Astrophysical Journal, 2012, 745, 69.	1.6	417
13	Compaction and quenching of high-z galaxies in cosmological simulations: blue and red nuggets. Monthly Notices of the Royal Astronomical Society, 2015, 450, 2327-2353.	1.6	392
14	The effect of galaxy mass ratio on merger-driven starbursts. Monthly Notices of the Royal Astronomical Society, 2008, 384, 386-409.	1.6	388
15	Properties of dark matter haloes in clusters, filaments, sheets and voids. Monthly Notices of the Royal Astronomical Society, 2007, 375, 489-499.	1.6	387
16	Star Formation in AEGIS Field Galaxies since z  = 1.1: Staged Galaxy Formation and a Model of Mass-dependent Gas Exhaustion. Astrophysical Journal, 2007, 660, L47-L50.	1.6	374
17	CANDELS: THE PROGENITORS OF COMPACT QUIESCENT GALAXIES AT <i>z</i> å^1/4 2. Astrophysical Journal, 2013, 765, 104.	1.6	367
18	Modelling the galaxy bimodality: shutdown above a critical halo mass. Monthly Notices of the Royal Astronomical Society, 0, 370, 1651-1665.	1.6	361

#	Article	IF	Citations
19	Wet disc contraction to galactic blue nuggets and quenching to red nuggets. Monthly Notices of the Royal Astronomical Society, 2014, 438, 1870-1879.	1.6	353
20	CANDELS: CONSTRAINING THE AGN-MERGER CONNECTION WITH HOST MORPHOLOGIES AT <i>z</i> â ¹ / ₄ 2. Astrophysical Journal, 2012, 744, 148.	1.6	330
21	The role of black holes in galaxy formation and evolution. Nature, 2009, 460, 213-219.	13.7	295
22	Homogeneous Velocityâ€Distance Data for Peculiar Velocity Analysis. III. The Mark III Catalog of Galaxy Peculiar Velocities. Astrophysical Journal, Supplement Series, 1997, 109, 333-366.	3.0	287
23	BARYONS MATTER: WHY LUMINOUS SATELLITE GALAXIES HAVE REDUCED CENTRAL MASSES. Astrophysical Journal, 2012, 761, 71.	1.6	278
24	SMOOTH(ER) STELLAR MASS MAPS IN CANDELS: CONSTRAINTS ON THE LONGEVITY OF CLUMPS IN HIGH-REDSHIFT STAR-FORMING GALAXIES. Astrophysical Journal, 2012, 753, 114.	1.6	271
25	Absorption-line systems in simulated galaxies fed by cold streams. Monthly Notices of the Royal Astronomical Society, 2011, 418, 1796-1821.	1.6	257
26	THE RELATION BETWEEN STAR FORMATION RATE AND STELLAR MASS FOR GALAXIES AT 3.5 \hat{a} \hat{o} $\frac{1}{2}$ < i > z < j > a \hat{o} $\frac{1}{2}$ CANDELS. Astrophysical Journal, 2015, 799, 183.	6,5 IN 1.6	253
27	WHAT TURNS GALAXIES OFF? THE DIFFERENT MORPHOLOGIES OF STAR-FORMING AND QUIESCENT GALAXIES SINCE <i>z</i> 2 FROM CANDELS. Astrophysical Journal, 2012, 753, 167.	1.6	251
28	Massive black hole seeds from low angular momentum material. Monthly Notices of the Royal Astronomical Society, 2004, 354, 292-304.	1.6	246
29	BULGE GROWTH AND QUENCHING SINCE <i>z < /i> = 2.5 IN CANDELS/3D-HST. Astrophysical Journal, 2014, 788, 11.</i>	1.6	244
30	The confinement of star-forming galaxies into a main sequence through episodes of gas compaction, depletion and replenishment. Monthly Notices of the Royal Astronomical Society, 2016, 457, 2790-2813.	1.6	239
31	A LINK BETWEEN STAR FORMATION QUENCHING AND INNER STELLAR MASS DENSITY IN SLOAN DIGITAL SKY SURVEY CENTRAL GALAXIES. Astrophysical Journal, 2013, 776, 63.	1.6	238
32	The mass evolution of the first galaxies: stellar mass functions and star formation rates at 4 < z < 7 in the CANDELS GOODS-South field. Monthly Notices of the Royal Astronomical Society, 2014, 444, 2960-2984.	1.6	236
33	The evolution of dark matter halo properties in clusters, filaments, sheets and voids. Monthly Notices of the Royal Astronomical Society, 2007, 381, 41-51.	1.6	235
34	A Revised Model for the Formation of Disk Galaxies: Low Spin and Dark Halo Expansion. Astrophysical Journal, 2007, 654, 27-52.	1.6	231
35	Feedback and the fundamental line of low-luminosity low-surface-brightness/dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2003, 344, 1131-1144.	1.6	227
36	Natural downsizing in hierarchical galaxy formation. Monthly Notices of the Royal Astronomical Society, 2006, 372, 933-948.	1.6	224

#	Article	IF	CITATIONS
37	High-redshift clumpy discs and bulges in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2010, , .	1.6	223
38	A galaxy rapidly forming stars 700 million years after the Big Bang at redshift 7.51. Nature, 2013, 502, 524-527.	13.7	223
39	Four phases of angular-momentum buildup in high-z galaxies: from cosmic-web streams through an extended ring to disc and bulge. Monthly Notices of the Royal Astronomical Society, 2015, 449, 2087-2111.	1.6	221
40	Evidence for mature bulges and an inside-out quenching phase 3 billion years after the Big Bang. Science, 2015, 348, 314-317.	6.0	219
41	Toy models for galaxy formation versus simulations. Monthly Notices of the Royal Astronomical Society, 2013, 435, 999-1019.	1.6	216
42	The galaxy stellar mass function at 3.5 ≤i>zàâ‰堺.5 in the CANDELS/UDS, GOODS-South, and HUDF fields. Astronomy and Astrophysics, 2015, 575, A96.	2.1	215
43	THE DEPENDENCE OF QUENCHING UPON THE INNER STRUCTURE OF GALAXIES AT 0.5 ⩽ <i>z</i> < 0.8 IN T DEEP2/AEGIS SURVEY. Astrophysical Journal, 2012, 760, 131.	HE 1.6	201
44	BLACK HOLE GROWTH AND ACTIVE GALACTIC NUCLEI OBSCURATION BY INSTABILITY-DRIVEN INFLOWS IN HIGH-REDSHIFT DISK GALAXIES FED BY COLD STREAMS. Astrophysical Journal Letters, 2011, 741, L33.	3.0	199
45	Scaling Relations of Spiral Galaxies. Astrophysical Journal, 2007, 671, 203-225.	1.6	197
46	Evolution of density profiles in high- <i>z</i> galaxies: compaction and quenching inside-out. Monthly Notices of the Royal Astronomical Society, 2016, 458, 242-263.	1.6	191
47	THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT. Astrophysical Journal, Supplement Series, 2014, 210, 14.	3.0	185
48	NIHAO – XI. Formation of ultra-diffuse galaxies by outflows. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 466, L1-L6.	1.2	185
49	Testing tidal-torque theory - I. Spin amplitude and direction. Monthly Notices of the Royal Astronomical Society, 2002, 332, 325-338.	1.6	183
50	Structural and Star-forming Relations since zÂâ ¹ ¼Â3: Connecting Compact Star-forming and Quiescent Galaxies. Astrophysical Journal, 2017, 840, 47.	1.6	180
51	Bursting and quenching in massive galaxies without major mergers or AGNs. Monthly Notices of the Royal Astronomical Society, 0, 380, 339-352.	1.6	174
52	CLUMPY GALAXIES IN CANDELS. I. THE DEFINITION OF UV CLUMPS AND THE FRACTION OF CLUMPY GALAXIES AT 0.5 < <i>z</i> < 3. Astrophysical Journal, 2015, 800, 39.	1.6	172
53	Dependence of galaxy quenching on halo mass and distance from its centre. Monthly Notices of the Royal Astronomical Society, 2013, 428, 3306-3326.	1.6	169
54	Radiative feedback and the low efficiency of galaxy formation in low-mass haloes at high redshift. Monthly Notices of the Royal Astronomical Society, 2014, 442, 1545-1559.	1.6	165

#	Article	IF	CITATIONS
55	THE LONG LIVES OF GIANT CLUMPS AND THE BIRTH OF OUTFLOWS IN GAS-RICH GALAXIES AT HIGH REDSHIFT. Astrophysical Journal, 2014, 780, 57.	1.6	161
56	A sub-parsec resolution simulation of the Milky Way: global structure of the interstellar medium and properties of molecular clouds. Monthly Notices of the Royal Astronomical Society, 2013, 436, 1836-1851.	1.6	159
57	Gravitational quenching in massive galaxies and clusters by clumpy accretion. Monthly Notices of the Royal Astronomical Society, 0, 383, 119-138.	1.6	158
58	GOODS- <i>HERSCHEL</i> AND CANDELS: THE MORPHOLOGIES OF ULTRALUMINOUS INFRARED GALAXIES AT <i>z</i> 2. Astrophysical Journal, 2012, 757, 23.	1.6	157
59	Lost and found dark matter in elliptical galaxies. Nature, 2005, 437, 707-710.	13.7	152
60	METALLICITY-DEPENDENT QUENCHING OF STAR FORMATION AT HIGH REDSHIFT IN SMALL GALAXIES. Astrophysical Journal, 2012, 753, 16.	1.6	152
61	Gravity-driven Lyl± blobs from cold streams into galaxies. Monthly Notices of the Royal Astronomical Society, 2010, 407, 613-631.	1.6	145
62	CANDELS+3D-HST: COMPACT SFGs AT <i>>z</i> >â^1/4 2-3, THE PROGENITORS OF THE FIRST QUIESCENT GALAXIES. Astrophysical Journal, 2014, 791, 52.	1.6	142
63	Physical mechanisms for biased galaxy formation. Nature, 1987, 326, 455-462.	13.7	138
64	The morphologies of massive galaxies at 1 < $\langle i \rangle z \langle i \rangle k$ lt; 3 in the CANDELS-UDS field: compact bulges, and the rise and fall of massive discs. Monthly Notices of the Royal Astronomical Society, 2012, 427, 1666-1701.	1.6	136
65	Non-linear stochastic galaxy biasing in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2001, 320, 289-306.	1.6	133
66	Morphologies of zÂâ^1⁄4Â0.7 AGN host galaxies in CANDELS: no trend of merger incidence with AGN luminosity. Monthly Notices of the Royal Astronomical Society, 2014, 439, 3342-3356.	1.6	132
67	CANDELS OBSERVATIONS OF THE STRUCTURAL PROPERTIES OF CLUSTER GALAXIES AT <i>z</i> = 1.62. Astrophysical Journal, 2012, 750, 93.	1.6	130
68	Rotational support of giant clumps in high-z disc galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 420, 3490-3520.	1.6	128
69	Testing tidal-torque theory - II. Alignment of inertia and shear and the characteristics of protohaloes. Monthly Notices of the Royal Astronomical Society, 2002, 332, 339-351.	1.6	127
70	GEOMETRY OF STAR-FORMING GALAXIES FROM SDSS, 3D-HST, AND CANDELS. Astrophysical Journal Letters, 2014, 792, L6.	3.0	125
71	Tidal effects and the environment dependence of halo assembly. Monthly Notices of the Royal Astronomical Society, 2009, 398, 1742-1756.	1.6	124
72	An analytic solution for the minimal bathtub toy model: challenges in the star formation history of high-z galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 444, 2071-2084.	1.6	123

#	Article	IF	CITATIONS
73	The redshift and mass dependence on the formation of the Hubble sequence at $z \& gt$; 1 from CANDELS/UDS. Monthly Notices of the Royal Astronomical Society, 2013, 433, 1185-1201.	1.6	121
74	SUB-KILOPARSEC ALMA IMAGING OF COMPACT STAR-FORMING GALAXIES AT $z\hat{a}^1/4\hat{a}2.5$: REVEALING THE FORMATION OF DENSE GALACTIC CORES IN THE PROGENITORS OF COMPACT QUIESCENT GALAXIES. Astrophysical Journal Letters, 2016, 827, L32.	3.0	119
75	A DIVERSITY OF PROGENITORS AND HISTORIES FOR ISOLATED SPIRAL GALAXIES. Astrophysical Journal, 2012, 756, 26.	1.6	114
76	The population of giant clumps in simulated high-z galaxies: in situ and ex situ migration and survival. Monthly Notices of the Royal Astronomical Society, 2014, 443, 3675-3702.	1.6	114
77	Two conditions for galaxy quenching: compact centres and massive haloes. Monthly Notices of the Royal Astronomical Society, 2015, 448, 237-251.	1.6	114
78	Balance among gravitational instability, star formation and accretion determines the structure and evolution of disc galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 438, 1552-1576.	1.6	112
79	On the Correlations of Massive Black Holes with Their Host Galaxies. Astrophysical Journal, 2006, 637, 96-103.	1.6	111
80	Coplanar streams, pancakes and angular-momentum exchange in high-z disc galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 422, 1732-1749.	1.6	108
81	Merger rates of dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2008, 388, 1792-1802.	1.6	107
82	THE ANGULAR MOMENTUM DISTRIBUTION AND BARYON CONTENT OF STAR-FORMING GALAXIES AT zÂâ^¼Â1†Astrophysical Journal, 2016, 826, 214.	"3* 1.6	107
83	Effect of Local Environment and Stellar Mass on Galaxy Quenching and Morphology at 0.5 < z < 2.0 [*] . Astrophysical Journal, 2017, 847, 134.	1.6	106
84	Downsizing by shutdown in red galaxies. Monthly Notices of the Royal Astronomical Society, 2008, 389, 567-584.	1.6	105
85	ZFOURGE/CANDELS: ON THE EVOLUTION OF <i>M </i> * GALAXY PROGENITORS FROM <i>z </i> = 3 TO 0.5. Astrophysical Journal, 2015, 803, 26.	1.6	104
86	Towards a resolution of the galactic spin crisis: mergers, feedback and spin segregation. Monthly Notices of the Royal Astronomical Society, 2002, 335, 487-498.	1.6	103
87	THE PROGENITORS OF THE COMPACT EARLY-TYPE GALAXIES AT HIGH REDSHIFT. Astrophysical Journal, 2014, 780, 1.	1.6	103
88	Modelling angular momentum history in dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2002, 329, 423-430.	1.6	102
89	Constructing merger trees that mimic N-body simulations. Monthly Notices of the Royal Astronomical Society, 0, 383, 615-626.	1.6	101
90	Giant clumps in simulated high- <i>z</i> Galaxies: properties, evolution and dependence on feedback. Monthly Notices of the Royal Astronomical Society, 2017, 464, 635-665.	1.6	100

#	Article	IF	Citations
91	Dust Attenuation, Bulge Formation, and Inside-out Quenching of Star Formation in Star-forming Main Sequence Galaxies at z $\hat{a}^{1/4}$ 2*. Astrophysical Journal, 2018, 859, 56.	1.6	100
92	Galactic halo cusp-core: tidal compression in mergers. Monthly Notices of the Royal Astronomical Society, 2003, 341, 326-342.	1.6	99
93	THE EVOLUTION OF STAR FORMATION HISTORIES OF QUIESCENT GALAXIES. Astrophysical Journal, 2016, 832, 79.	1.6	99
94	Enhanced momentum feedback from clustered supernovae. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2471-2488.	1.6	99
95	On the puzzling plateau in the specific star formation rate at $z=2-7$. Monthly Notices of the Royal Astronomical Society, 2011, 417, 2737-2751.	1.6	95
96	Deconstructing the galaxy stellar mass function with UKIDSS and CANDELS: the impact of colour, structure and environment. Monthly Notices of the Royal Astronomical Society, 2015, 447, 2-24.	1.6	95
97	The ATLAS3D project – XXII. Low-efficiency star formation in early-type galaxies: hydrodynamic models and observations. Monthly Notices of the Royal Astronomical Society, 2013, 432, 1914-1927.	1.6	94
98	On the origin of the galaxy star-formation-rate sequence: evolution and scatter. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	1.6	91
99	Steady outflows in giant clumps of high-z disc galaxies during migration and growth by accretion. Monthly Notices of the Royal Astronomical Society, 2013, 432, 455-467.	1.6	89
100	THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT. II. ISOLATED DISK TEST. Astrophysical Journal, 2016, 833, 202.	1.6	88
101	Formation of ultra-diffuse galaxies in the field and in galaxy groups. Monthly Notices of the Royal Astronomical Society, 2019, 487, 5272-5290.	1.6	87
102	Survival of star-forming giant clumps in high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2010, 406, 112-120.	1.6	86
103	The relationship between galaxy and dark matter halo size from zÂâ^¼Â3 to the present. Monthly Notices of the Royal Astronomical Society, 2018, 473, 2714-2736.	1.6	86
104	Scaling relations and the fundamental line of the local group dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2008, , .	1.6	84
105	Homogeneous Velocity-Distance Data for Peculiar Velocity Analysis. II. Calibration of Field Samples. Astrophysical Journal, 1996, 457, 460.	1.6	84
106	Early formation of massive, compact, spheroidal galaxies with classical profiles by violent disc instability or mergers. Monthly Notices of the Royal Astronomical Society, 2015, 447, 3291-3310.	1.6	81
107	Demographics of Star-forming Galaxies since zÂâ^1/4Â2.5. I. The UVJ Diagram in CANDELS. Astrophysical Journal, 2018, 858, 100.	1.6	79
108	On the origin of the fundamental metallicity relation and the scatter in galaxy scaling relations. Monthly Notices of the Royal Astronomical Society, 2014, 443, 168-185.	1.6	77

#	Article	IF	Citations
109	Non-linear violent disc instability with high Toomre's $\langle i \rangle Q \langle j \rangle$ in high-redshift clumpy disc galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 456, 2052-2069.	1.6	77
110	Is the dark-matter halo spin a predictor of galaxy spin and size?. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4801-4815.	1.6	77
111	OBSERVATIONS OF ENVIRONMENTAL QUENCHING IN GROUPS IN THE 11 GYR SINCE <i>z < /i> = 2.5: DIFFERENT QUENCHING FOR CENTRAL AND SATELLITE GALAXIES. Astrophysical Journal, 2014, 789, 164.</i>	1.6	74
112	NIHAO IX: the role of gas inflows and outflows in driving the contraction and expansion of cold dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2016, 461, 2658-2675.	1.6	74
113	AN OBSERVED LINK BETWEEN ACTIVE GALACTIC NUCLEI AND VIOLENT DISK INSTABILITIES IN HIGH-REDSHIFT GALAXIES. Astrophysical Journal, 2012, 757, 81.	1.6	73
114	Mass assembly and morphological transformations since $\langle i \rangle z \langle i \rangle \hat{a}^1 /\!\!/4$ 3 from CANDELS. Monthly Notices of the Royal Astronomical Society, 2016, 462, 4495-4516.	1.6	73
115	STRUCTURAL EVOLUTION OF EARLY-TYPE GALAXIES TO <i>z</i> = 2.5 IN CANDELS. Astrophysical Journal, 2013, 773, 149.	1.6	72
116	CANDELS: Elevated Black Hole Growth in the Progenitors of Compact Quiescent Galaxies at zÂâ^1/4Â2. Astrophysical Journal, 2017, 846, 112.	1.6	72
117	Clumpy Galaxies in CANDELS. II. Physical Properties of UV-bright Clumps at 0.5Ââ‰ÅzÂ<Â3. Astrophysical Journal, 2018, 853, 108.	1.6	71
118	KECK-I MOSFIRE SPECTROSCOPY OF COMPACT STAR-FORMING GALAXIES AT <i>z</i>)i>2: HIGH VELOCITY DISPERSIONS IN PROGENITORS OF COMPACT QUIESCENT GALAXIES. Astrophysical Journal, 2014, 795, 145.	1.6	70
119	Non-parametric analysis of the rest-frame UV sizes and morphological disturbance amongst <i>L</i> _* galaxies at 4 < <i>z</i> < 8. Monthly Notices of the Royal Astronomical Society, 2016, 457, 440-464.	1.6	70
120	Galaxy Zoo: quantitative visual morphological classifications for 48Â000 galaxies from CANDELS. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4420-4447.	1.6	70
121	Deep Learning Identifies High-z Galaxies in a Central Blue Nugget Phase in a Characteristic Mass Range. Astrophysical Journal, 2018, 858, 114.	1.6	70
122	MUSE searches for galaxies near very metal-poor gas clouds at <i>z </i> $\hat{a}^{1/4}$ 3: new constraints for cold accretion models. Monthly Notices of the Royal Astronomical Society, 2016, 462, 1978-1988.	1.6	66
123	Quenching as a Contest between Galaxy Halos and Their Central Black Holes. Astrophysical Journal, 2020, 897, 102.	1.6	66
124	Evaluating approximations for halo merging histories. Monthly Notices of the Royal Astronomical Society, 2000, 316, 479-490.	1.6	65
125	EVOLUTION OF INTRINSIC SCATTER IN THE SFR–STELLAR MASS CORRELATION AT 0.5 < z < 3. Astrophysical Journal Letters, 2016, 820, L1.	3.0	65
126	Major merging history in CANDELS. I. Evolution of the incidence of massive galaxy–galaxy pairs from zÂ=Â3 to zÂâ^¼ÂO. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1549-1573.	1.6	65

#	Article	IF	CITATIONS
127	CANDELS: THE CORRELATION BETWEEN GALAXY MORPHOLOGY AND STAR FORMATION ACTIVITY AT < i> z < /i> $\hat{a}^{1}/4$ 2. Astrophysical Journal, 2013, 774, 47.	1.6	64
128	CONFRONTING SIMULATIONS OF OPTICALLY THICK GAS IN MASSIVE HALOS WITH OBSERVATIONS AT < i> z < /i> = 2-3. Astrophysical Journal, 2014, 780, 74.	1.6	64
129	Evidence for a positive cosmological constant from flows of galaxies and distant supernovae. Nature, 1999, 401, 252-254.	13.7	63
130	Dark halo response and the stellar initial mass function in early-type and late-type galaxies. Monthly Notices of the Royal Astronomical Society, 2011, , no-no.	1.6	63
131	The nature of massive transition galaxies in CANDELS, GAMA and cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2054-2084.	1.6	63
132	Gas inflow and metallicity drops in star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 457, 2605-2612.	1.6	62
133	The bulge–disc decomposed evolution of massive galaxies at 1 < z < 3 in CANDELS. Monthly Notices of the Royal Astronomical Society, 2014, 444, 1001-1033.	1.6	60
134	The insignificance of major mergers in driving star formation at $\langle i \rangle z \langle i \rangle$ â‰ f 2. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 429, L40-L44.	1.2	59
135	CANDELS OBSERVATIONS OF THE ENVIRONMENTAL DEPENDENCE OF THE COLOR-MASS-MORPHOLOGY RELATION AT <i>z</i> = 1.6. Astrophysical Journal, 2013, 770, 58.	1.6	59
136	Quenching and morphological transformation in semi-analytic models and CANDELS. Monthly Notices of the Royal Astronomical Society, 2015, 451, 2933-2956.	1.6	59
137	Quenching of satellite galaxies at the outskirts of galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3654-3681.	1.6	59
138	Linking galaxy structural properties and star formation activity to black hole activity with IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4413-4443.	1.6	59
139	The host galaxies of X-ray selected active galactic nuclei to <i>z</i> = 2.5: Structure, star formation, and their relationships from CANDELS and <i>Herschel</i> /I>/PACS. Astronomy and Astrophysics, 2015, 573, A85.	2.1	58
140	INFRARED COLOR SELECTION OF MASSIVE GALAXIES AT zÂ>Â3. Astrophysical Journal, 2016, 816, 84.	1.6	57
141	The dissipative merger progenitors of elliptical galaxies. Monthly Notices of the Royal Astronomical Society, 2006, 370, 1445-1453.	1.6	54
142	AN INCREASING STELLAR BARYON FRACTION IN BRIGHT GALAXIES AT HIGH REDSHIFT. Astrophysical Journal, 2015, 814, 95.	1.6	54
143	Diverse structural evolution at $i>z$ A>Â1 in cosmologically simulated galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 451, 4290-4310.	1.6	54
144	Suppression of star formation in dwarf galaxies by photoelectric grain heating feedback. Nature, 2016, 535, 523-525.	13.7	53

#	Article	IF	Citations
145	The properties of (sub-)millimetre-selected galaxies as revealed by CANDELS HST WFC3/IR imaging in GOODS-South. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2012-2042.	1.6	52
146	Structural Evolution in Massive Galaxies at z $\hat{a}^{1}/4$ 2. Astrophysical Journal, 2020, 901, 74.	1.6	52
147	Evolution of violent gravitational disc instability in galaxies: late stabilization by transition from gas to stellar dominance. Monthly Notices of the Royal Astronomical Society, 2012, , no-no.	1.6	51
148	Star formation and clumps in cosmological galaxy simulations with radiation pressure feedback. Monthly Notices of the Royal Astronomical Society, 2014, 444, 1389-1399.	1.6	51
149	Instability of supersonic cold streams feeding galaxies – IV. Survival of radiatively cooling streams. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2641-2663.	1.6	51
150	On the effect of cosmological inflow on turbulence and instability in galactic discs. Monthly Notices of the Royal Astronomical Society, 2012, 425, 788-800.	1.6	50
151	SATELLITE QUENCHING AND GALACTIC CONFORMITY AT 0.3 < z < 2.5*. Astrophysical Journal, 2016, 817, 9.	1.6	50
152	On combining galaxy clustering and weak lensing to unveil galaxy biasing via the halo model. Monthly Notices of the Royal Astronomical Society, 2012, 426, 566-587.	1.6	48
153	X-RAY SELECTED AGN HOST GALAXIES ARE SIMILAR TO INACTIVE GALAXIES OUT TO <i>z</i> = 3: RESULTS FROM CANDELS/CDF-S. Astrophysical Journal, 2013, 763, 59.	1.6	48
154	Distinguishing Mergers and Disks in High-redshift Observations of Galaxy Kinematics. Astrophysical Journal, 2019, 874, 59.	1.6	47
155	Instability of supersonic cold streams feeding galaxies – I. Linear Kelvin–Helmholtz instability with body modes. Monthly Notices of the Royal Astronomical Society, 2016, 463, 3921-3947.	1.6	46
156	Evolution of galaxy shapes from prolate to oblate through compaction events. Monthly Notices of the Royal Astronomical Society, 2016, 458, 4477-4497.	1.6	46
157	Formation of elongated galaxies with low masses at high redshift. Monthly Notices of the Royal Astronomical Society, 2015, 453, 408-413.	1.6	45
158	Properties of dark matter haloes as a function of local environment density. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3834-3858.	1.6	44
159	The evolution of galaxy shapes in CANDELS: from prolate to discy. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5170-5191.	1.6	44
160	SatGen: a semi-analytical satellite galaxy generator – I. The model and its application to Local-Group satellite statistics. Monthly Notices of the Royal Astronomical Society, 2021, 502, 621-641.	1.6	44
161	Detectability of cold streams into high-redshift galaxies by absorption lines. Monthly Notices of the Royal Astronomical Society, 2012, 424, 2292-2315.	1.6	43
162	Dark Halo Cusp: Asymptotic Convergence. Astrophysical Journal, 2003, 588, 680-695.	1.6	42

#	Article	IF	CITATIONS
163	Newborn spheroids at high redshift: when and how did the dominant, old stars in today's massive galaxies form?. Monthly Notices of the Royal Astronomical Society, 2013, 428, 925-934.	1.6	42
164	The decomposed bulge and disc size–mass relations of massive galaxies at 1Â<ÂzÂ<Â3 in CANDELS. Monthly Notices of the Royal Astronomical Society, 2014, 444, 1660-1673.	1.6	42
165	Spatially Resolved Kinematics in the Central 1 kpc of a Compact Star-forming Galaxy at zÂâ^¼Â2.3 from ALMA CO Observations. Astrophysical Journal Letters, 2017, 851, L40.	3.0	42
166	A model for core formation in dark matter haloes and ultra-diffuse galaxies by outflow episodes. Monthly Notices of the Royal Astronomical Society, 2020, 491, 4523-4542.	1.6	42
167	The inferred evolution of the cold gas properties of CANDELS galaxies at 0.5 < <i>z</i> < 3.0. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2258-2276.	1.6	41
168	The relationship between star formation activity and galaxy structural properties in CANDELS and a semi-analytic model. Monthly Notices of the Royal Astronomical Society, 2017, 465, 619-640.	1.6	41
169	CANDELS: CORRELATIONS OF SPECTRAL ENERGY DISTRIBUTIONS AND MORPHOLOGIES WITH STAR FORMATION STATUS FOR MASSIVE GALAXIES AT <i>z</i> f>a^1/4 2. Astrophysical Journal, 2012, 752, 134.	1.6	39
170	CAUGHT IN THE ACT: GAS AND STELLAR VELOCITY DISPERSIONS IN A FAST QUENCHING COMPACT STAR-FORMING GALAXY AT zÂâ ⁻¹ ⁄4Â1.7. Astrophysical Journal, 2016, 820, 120.	1.6	39
171	Nearly all Massive Quiescent Disk Galaxies Have a Surprisingly Large Atomic Gas Reservoir. Astrophysical Journal Letters, 2019, 884, L52.	3.0	39
172	A mass threshold for galactic gas discs by spin flips. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4126-4142.	1.6	39
173	LUMINOUS AND HIGH STELLAR MASS CANDIDATE GALAXIES AT <i>z</i> assembly NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY. Astrophysical Journal, 2012, 761, 177.	1.6	38
174	PROPERTIES OF SUBMILLIMETER GALAXIES IN THE CANDELS GOODS-SOUTH FIELD. Astrophysical Journal, 2014, 785, 111.	1.6	38
175	A deep learning approach to test the small-scale galaxy morphology and its relationship with star formation activity in hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4359-4382.	1.6	38
176	Instability of supersonic cold streams feeding Galaxies – III. Kelvin–Helmholtz instability in three dimensions. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1100-1132.	1.6	37
177	The new semi-analytic code GallCS 2.0 – reproducing the galaxy stellar mass function and the Tully–Fisher relation simultaneously. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1401-1427.	1.6	36
178	Predicting the properties of the remnants of dissipative galaxy mergers. Monthly Notices of the Royal Astronomical Society, 2008, 384, 94-106.	1.6	35
179	Mock light-cones and theory friendly catalogues for the CANDELS survey. Monthly Notices of the Royal Astronomical Society, 2021, 502, 4858-4876.	1.6	35
180	Multi-filament gas inflows fuelling young star-forming galaxies. Nature Astronomy, 2019, 3, 822-831.	4.2	34

#	Article	IF	CITATIONS
181	Phase-space structure of dark matter haloes: scale-invariant probability density function driven by substructure. Monthly Notices of the Royal Astronomical Society, 2004, 353, 15-29.	1.6	33
182	The role of dissipation in the scaling relations of cosmological merger remnants. Monthly Notices of the Royal Astronomical Society, 2011, 415, 3135-3152.	1.6	33
183	The formation of bulges, discs and two-component galaxies in the CANDELS Survey at <i>z</i> Â<Â3. Monthly Notices of the Royal Astronomical Society, 2016, 461, 2728-2746.	1.6	33
184	Satellite quenching, Galaxy inner density and the halo environment. Monthly Notices of the Royal Astronomical Society, 2017, 464, 1077-1094.	1.6	33
185	Dark-matter halo profiles of a general cusp/core with analytic velocity and potential. Monthly Notices of the Royal Astronomical Society, 2017, 468, 1005-1022.	1.6	32
186	The role of penetrating gas streams in setting the dynamical state of galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2016, 461, 412-432.	1.6	30
187	STELLAR MASS–GAS-PHASE METALLICITY RELATION AT 0.5 â‰ Â zÂâ‰ ¤ 0.7: A POWER LAW WITH INCREASING S TOWARD THE LOW-MASS REGIME. Astrophysical Journal, 2016, 822, 103.	SCATTER 1.6	29
188	Origin of star-forming rings around massive centres in massive galaxies at $\langle i \rangle z \langle i \rangle$ & amp; It; 4. Monthly Notices of the Royal Astronomical Society, 2020, 496, 5372-5398.	1.6	29
189	On the Evolution of the Central Density of Quiescent Galaxies. Astrophysical Journal Letters, 2017, 844, L1.	3.0	28
190	Instability of supersonic cold streams feeding galaxies–II. Non-linear evolution of surface and body modes of Kelvin–Helmholtz instability. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3293-3328.	1.6	28
191	Stellar masses of giant clumps in CANDELS and simulated galaxies using machine learning. Monthly Notices of the Royal Astronomical Society, 2020, 499, 814-835.	1.6	27
192	Gravitational quenching by clumpy accretion in cool-core clusters: convective dynamical response to overheating. Monthly Notices of the Royal Astronomical Society, 2011, 415, 2566-2579.	1.6	25
193	CGM properties in VELA and NIHAO simulations; the OVI ionization mechanism: dependence on redshift, halo mass, and radius. Monthly Notices of the Royal Astronomical Society, 2019, 484, 3625-3645.	1.6	25
194	The Dekel-Zhao profile: a mass-dependent dark-matter density profile with flexible inner slope and analytic potential, velocity dispersion, and lensing properties. Monthly Notices of the Royal Astronomical Society, 2020, 499, 2912-2933.	1.6	25
195	Shapes of Stellar Systems and Dark Halos from Simulations of Galaxy Major Mergers. Astrophysical Journal, 2006, 646, L9-L12.	1.6	24
196	THE DISTRIBUTION OF SATELLITES AROUND MASSIVE GALAXIES AT 1 < <i>>z</i> >< 3 IN ZFOURGE/CANDELS: DEPENDENCE ON STAR FORMATION ACTIVITY. Astrophysical Journal, 2014, 792, 103.	1.6	24
197	THE INTERSTELLAR MEDIUM AND FEEDBACK IN THE PROGENITORS OF THE COMPACT PASSIVE GALAXIES AT <i>> z</i> $\hat{a}^{-1}/4$ 2. Astrophysical Journal, 2015, 800, 21.	1.6	24
198	Velocities of warm galactic outflows from synthetic $H\hat{l}_{\pm}$ observations of star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2731-2743.	1.6	24

#	Article	IF	CITATIONS
199	Distribution of streaming rates into high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 454, 637-648.	1.6	23
200	CANDELS Sheds Light on the Environmental Quenching of Low-mass Galaxies. Astrophysical Journal Letters, 2017, 841, L22.	3.0	23
201	Formation and settling of a disc galaxy during the last 8 billion years in a cosmological simulation. Monthly Notices of the Royal Astronomical Society, 2017, 467, 2664-2672.	1.6	23
202	Cold fronts and shocks formed by gas streams in galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2018, 476, 56-70.	1.6	23
203	LyÂα blobs from cold streams undergoing Kelvin–Helmholtz instabilities. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2415-2427.	1.6	23
204	On the origin of surprisingly cold gas discs in galaxies at high redshift. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3266-3275.	1.6	22
205	Is the Universe dominated by relativistic particles?. Nature, 1986, 323, 781-784.	13.7	21
206	The global star formation law by supernova feedback. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4753-4778.	1.6	20
207	NO MORE ACTIVE GALACTIC NUCLEI IN CLUMPY DISKS THAN IN SMOOTH GALAXIES AT <i>z</i> â^1/4 2 IN CANDELS/3D-HST. Astrophysical Journal, 2014, 793, 101.	1.6	18
208	Compaction-driven black hole growth. Monthly Notices of the Royal Astronomical Society, 2021, 505, 172-190.	1.6	18
209	Universal merger histories of dark-matter haloes. Monthly Notices of the Royal Astronomical Society, 0, 403, 984-995.	1.6	17
210	EVIDENCE FOR REDUCED SPECIFIC STAR FORMATION RATES IN THE CENTERS OF MASSIVE GALAXIES AT $z\hat{A}=\hat{A}4$. Astrophysical Journal, 2017, 834, 81.	1.6	17
211	Kelvin–Helmholtz instability in self-gravitating streams. Monthly Notices of the Royal Astronomical Society, 2019, 490, 181-201.	1.6	17
212	O <scp>vi</scp> traces photoionized streams with collisionally ionized boundaries in cosmological simulations of <i>z</i> â ¹ /4 1 massive galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4948-4967.	1.6	16
213	Effect of the Great Attractor on the cosmic microwave background radiation. Nature, 1990, 345, 507-508.	13.7	15
214	The frequency of very young galaxies in the local Universe: I. A test for galaxy formation and cosmological models. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1427-1450.	1.6	13
215	On the Transition of the Galaxy Quenching Mode at 0.5Â<ÂzÂ<Â1 in CANDELS. Astrophysical Journal, 2018, 860, 60.	1.6	13
216	Can intrinsic alignments of elongated low-mass galaxies be used to map the cosmic web at high redshift?. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5580-5593.	1.6	13

#	Article	IF	Citations
217	Evaluating galaxy dynamical masses from kinematics and jeans equilibrium in simulations. Monthly Notices of the Royal Astronomical Society, 2021, 503, 5238-5253.	1.6	13
218	Clump survival and migration in VDI galaxies: an analytical model versus simulations and observations. Monthly Notices of the Royal Astronomical Society, 2022, 511, 316-340.	1.6	13
219	Mass and Environment as Drivers of Galaxy Evolution. IV. On the Quenching of Massive Central Disk Galaxies in the Local Universe. Astrophysical Journal, 2021, 911, 57.	1.6	12
220	The AGORA High-resolution Galaxy Simulations Comparison Project. III. Cosmological Zoom-in Simulation of a Milky Way–mass Halo. Astrophysical Journal, 2021, 917, 64.	1.6	12
221	Unveiling Sizes of Compact AGN Hosts with ALMA. Astrophysical Journal, 2020, 888, 44.	1.6	12
222	The star-forming progenitors of massive red galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 430, 686-698.	1.6	11
223	Tidal stripping and post-merger relaxation of dark matter haloes: causes and consequences of mass-loss. Monthly Notices of the Royal Astronomical Society, 2018, 481, 4038-4057.	1.6	11
224	The nature of giant clumps in high- <i>z</i> discs: a deep-learning comparison of simulations and observations. Monthly Notices of the Royal Astronomical Society, 2020, 501, 730-746.	1.6	11
225	Core formation in high-z massive haloes: heating by post-compaction satellites and response to AGN outflows. Monthly Notices of the Royal Astronomical Society, 2021, 508, 999-1019.	1.6	10
226	THE ROLE OF BULGE FORMATION IN THE HOMOGENIZATION OF STELLAR POPULATIONS AT < i > Z < / i > â^1/4 2 AS REVEALED BY INTERNAL COLOR DISPERSION IN CANDELS. Astrophysical Journal, 2015, 803, 104.	1.6	8
227	The Star Formation Rate–Radius Connection: Data and Implications for Wind Strength and Halo Concentration. Astrophysical Journal, 2020, 899, 93.	1.6	8
228	On galaxies and homology. Monthly Notices of the Royal Astronomical Society, 2012, 424, 635-648.	1.6	7
229	Reconstruction of the two-dimensional gravitational potential of galaxy clusters from X-ray and Sunyaev-Zel'dovich measurements. Astronomy and Astrophysics, 2018, 614, A38.	2.1	5
230	Implications of Increased Central Mass Surface Densities for the Quenching of Low-mass Galaxies. Astrophysical Journal, 2021, 914, 7.	1.6	5
231	COMMISSION 28: GALAXIES. Proceedings of the International Astronomical Union, 2011, 7, 255-259.	0.0	3
232	Tidal effects on the mass profile of galactic haloes. Nature, 1980, 286, 135-136.	13.7	1
233	Do the Low PN Velocity Dispersions Around Elliptical Galaxies Imply That These Lack Dark Matter?. AIP Conference Proceedings, 2005, , .	0.3	1
234	The build-up of the outskirts of distant star-forming galaxies at $z\sim 2$. Proceedings of the International Astronomical Union, 2016, 11, 327-329.	0.0	1

#	Article	IF	CITATIONS
235	MUSE searches for galaxies near very metal-poor gas clouds at z \hat{a}^4 3: new constraints for cold accretion models., 0, .		1
236	Towards Understanding the Large-Scale Structure?. Symposium - International Astronomical Union, 1987, 124, 415-432.	0.1	0
237	Giant Arcs – Spherical Shells?. Symposium - International Astronomical Union, 1988, 130, 598-598.	0.1	O
238	THE COSMOLOGICAL Ω FROM PECULIAR VELOCITIES. Annals of the New York Academy of Sciences, 1993, 688, 558-564.	1.8	0
239	Cosmological implications of Lyman-break galaxy clustering. , 1999, , .		O
240	Characteristic Scale and Bimodality in Galaxies: Cold Streams, Shock Heating, Feedback and Clustering. AIP Conference Proceedings, 2004, , .	0.3	0
241	COMMISSION 28: GALAXIES. Proceedings of the International Astronomical Union, 2008, 4, 286-294.	0.0	O
242	DIVISION J COMMISSION 28: GALAXIES. Proceedings of the International Astronomical Union, 2015, 11, 525-530.	0.0	0
243	Scale Free Processes in Galaxy Formation. Proceedings of the International Astronomical Union, 2015, 11, 696-698.	0.0	0
244	Indirectly Measuring Stellar Velocity Dispersions in High-redshift Disk Galaxies. Research Notes of the AAS, 2020, 4, 203.	0.3	0