Bernd H Zinselmeyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9179083/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Na ⁺ is shifted from the extracellular to the intracellular compartment and is not inactivated by glycosaminoglycans during high salt conditions in rats. Journal of Physiology, 2022, 600, 2293-2309.	2.9	17
2	Intercellular Mitochondria Transfer to Macrophages Regulates White Adipose Tissue Homeostasis and Is Impaired in Obesity. Cell Metabolism, 2021, 33, 270-282.e8.	16.2	160
3	LYVE1+ macrophages of murine peritoneal mesothelium promote omentum-independent ovarian tumor growth. Journal of Experimental Medicine, 2021, 218, .	8.5	31
4	Commensal Cryptosporidium colonization elicits a cDC1-dependent Th1 response that promotes intestinal homeostasis and limits other infections. Immunity, 2021, 54, 2547-2564.e7.	14.3	28
5	lleitis-associated tertiary lymphoid organs arise at lymphatic valves and impede mesenteric lymph flow in response to tumor necrosis factor. Immunity, 2021, 54, 2795-2811.e9.	14.3	31
6	Polysaccharide Capsules Equip the Human Symbiont Bacteroides thetaiotaomicron to Modulate Immune Responses to a Dominant Antigen in the Intestine. Journal of Immunology, 2020, 204, 1035-1046.	0.8	26
7	Limited proliferation capacity of aortic intima resident macrophages requires monocyte recruitment for atherosclerotic plaque progression. Nature Immunology, 2020, 21, 1194-1204.	14.5	115
8	Kir6.1â€dependent K _{ATP} channels in lymphatic smooth muscle and vessel dysfunction in mice with Kir6.1 gainâ€ofâ€function. Journal of Physiology, 2020, 598, 3107-3127.	2.9	34
9	IMMU-26. UNRAVELING ANTIGEN PRESENTATION IN CENTRAL NERVOUS SYSTEM ANTI-TUMOR IMMUNITY. Neuro-Oncology, 2020, 22, ii110-ii110.	1.2	Ο
10	Expression of factor V by resident macrophages boosts host defense in the peritoneal cavity. Journal of Experimental Medicine, 2019, 216, 1291-1300.	8.5	94
11	Interleukin-17 Drives Interstitial Entrapment of Tissue Lipoproteins in Experimental Psoriasis. Cell Metabolism, 2019, 29, 475-487.e7.	16.2	38
12	Tuning T Cell Signaling Sensitivity Alters the Behavior of CD4+ T Cells during an Immune Response. Journal of Immunology, 2018, 200, 3429-3437.	0.8	9
13	The resident macrophages in murine pancreatic islets are constantly probing their local environment, capturing beta cell granules and blood particles. Diabetologia, 2018, 61, 1374-1383.	6.3	48
14	Opposing Roles of Dendritic Cell Subsets in Experimental GN. Journal of the American Society of Nephrology: JASN, 2018, 29, 138-154.	6.1	65
15	Pancreatic islets communicate with lymphoid tissues via exocytosis of insulin peptides. Nature, 2018, 560, 107-111.	27.8	81
16	Limited Macrophage Positional Dynamics in Progressing or Regressing Murine Atherosclerotic Plaques—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1702-1710.	2.4	39
17	A Polecat's View of Patrolling Monocytes. Circulation Research, 2017, 120, 1699-1701.	4.5	11
18	Resident macrophages of pancreatic islets have a seminal role in the initiation of autoimmune diabetes of NOD mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10418-E10427.	7.1	119

Bernd H Zinselmeyer

#	Article	IF	CITATIONS
19	Thermoneutrality but Not UCP1 Deficiency Suppresses Monocyte Mobilization Into Blood. Circulation Research, 2017, 121, 662-676.	4.5	37
20	The Lymphatic System: Integral Roles in Immunity. Annual Review of Immunology, 2017, 35, 31-52.	21.8	244
21	CD36 Deficiency Impairs the Small Intestinal Barrier and InducesÂSubclinical Inflammation in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2017, 3, 82-98.	4.5	42
22	Intravital and Kidney Slice Imaging of Podocyte Membrane Dynamics. Journal of the American Society of Nephrology: JASN, 2016, 27, 3285-3290.	6.1	50
23	Lymphoid Aggregates Remodel Lymphatic Collecting Vessels that Serve Mesenteric Lymph Nodes in Crohn Disease. American Journal of Pathology, 2016, 186, 3066-3073.	3.8	72
24	Real-Time Analysis of Calcium Signals during the Early Phase of T Cell Activation Using a Genetically Encoded Calcium Biosensor. Journal of Immunology, 2016, 196, 1471-1479.	0.8	43
25	IL-1–induced Bhlhe40 identifies pathogenic T helper cells in a model of autoimmune neuroinflammation. Journal of Experimental Medicine, 2016, 213, 251-271.	8.5	81
26	CCR7 and IRF4-dependent dendritic cells regulate lymphatic collecting vessel permeability. Journal of Clinical Investigation, 2016, 126, 1581-1591.	8.2	72
27	TREM2 Lipid Sensing Sustains the Microglial Response in an Alzheimer's Disease Model. Cell, 2015, 160, 1061-1071.	28.9	1,236
28	DAP12 Expression in Lung Macrophages Mediates Ischemia/Reperfusion Injury by Promoting Neutrophil Extravasation. Journal of Immunology, 2015, 194, 4039-4048.	0.8	48
29	Beta cells transfer vesicles containing insulin to phagocytes for presentation to T cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5496-502.	7.1	85
30	Development of an Immunologically Tolerated Combination of Fluorescent Proteins for In vivo Two-photon Imaging. Scientific Reports, 2014, 4, 6664.	3.3	17
31	Central memory CD8+ T lymphocytes mediate lung allograft acceptance. Journal of Clinical Investigation, 2014, 124, 1130-1143.	8.2	97
32	Regulatory T Cells Suppress the Late Phase of the Immune Response in Lymph Nodes through P-Selectin Glycoprotein Ligand-1. Journal of Immunology, 2013, 191, 5489-5500.	0.8	47
33	Type I Interferon Programs Innate Myeloid Dynamics and Gene Expression in the Virally Infected Nervous System. PLoS Pathogens, 2013, 9, e1003395.	4.7	46
34	PD-1 promotes immune exhaustion by inducing antiviral T cell motility paralysis. Journal of Experimental Medicine, 2013, 210, 757-774.	8.5	211
35	In vivo dynamics of innate immune sentinels in the CNS. Intravital, 2012, 1, 95-106.	2.0	91
36	Two-Photon Imaging of Microbial Immunity in Living Tissues. Microscopy and Microanalysis, 2012, 18, 730-741.	0.4	22

Bernd H Zinselmeyer

#	Article	IF	CITATIONS
37	In vivo imaging implicates CCR2+ monocytes as regulators of neutrophil recruitment during arthritis. Cellular Immunology, 2012, 278, 103-112.	3.0	29
38	Intravital 2-photon imaging of leukocyte trafficking in beating heart. Journal of Clinical Investigation, 2012, 122, 2499-2508.	8.2	113
39	T Cell Dynamics during Induction of Tolerance and Suppression of Experimental Allergic Encephalomyelitis. Journal of Immunology, 2011, 187, 3979-3986.	0.8	13
40	Non-invasive Imaging of Leukocyte Homing and Migration in vivo . Journal of Visualized Experiments, 2010, , .	0.3	5
41	CCR2 Regulates Monocyte Recruitment As Well As CD4+ Th1 Allorecognition After Lung Transplantation. American Journal of Transplantation, 2010, 10, 1189-1199.	4.7	61
42	The Actin-Bundling Protein <scp>l</scp> -Plastin Dissociates CCR7 Proximal Signaling from CCR7-Induced Motility. Journal of Immunology, 2010, 184, 3628-3638.	0.8	49
43	In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18073-18078.	7.1	348
44	ITAM Signaling by Vav Family Rho Guanine Nucleotide Exchange Factors Regulates Interstitial Transit Rates of Neutrophils In Vivo. PLoS ONE, 2009, 4, e4652.	2.5	27
45	Cutting Edge: Acute Lung Allograft Rejection Is Independent of Secondary Lymphoid Organs. Journal of Immunology, 2009, 182, 3969-3973.	0.8	123
46	Chapter 16 Twoâ€Photon Microscopy and Multidimensional Analysis of Cell Dynamics. Methods in Enzymology, 2009, 461, 349-378.	1.0	55
47	Streptolysin S Inhibits Neutrophil Recruitment during the Early Stages of <i>Streptococcus pyogenes</i> Infection. Infection and Immunity, 2009, 77, 5190-5201.	2.2	65
48	The gastric epithelial progenitor cell niche and differentiation of the zymogenic (chief) cell lineage. Developmental Biology, 2009, 325, 211-224.	2.0	80
49	Video-rate two-photon imaging of mouse footpad – a promising model for studying leukocyte recruitment dynamics during inflammation. Inflammation Research, 2008, 57, 93-96.	4.0	60
50	Bacterial Entry to the Splenic White Pulp Initiates Antigen Presentation to CD8+ T Cells. Immunity, 2008, 29, 476-486.	14.3	112
51	Malaria Impairs T Cell Clustering and Immune Priming despite Normal Signal 1 from Dendritic Cells. PLoS Pathogens, 2007, 3, e143.	4.7	81
52	Multiphoton Microscopy for 3-Dimensional Imaging of Lymphocyte Recruitment Into Apolipoprotein-E–Deficient Mouse Carotid Artery. Circulation, 2007, 115, e326-8.	1.6	32
53	Lymphocyte tracking and interactions in secondary lymphoid organs. Inflammation Research, 2007, 56, 391-401.	4.0	20
54	Reversal of the TCR Stop Signal by CTLA-4. Science, 2006, 313, 1972-1975.	12.6	549

#	Article	IF	CITATIONS
55	Preferential liver gene expression with polypropylenimine dendrimers. Journal of Controlled Release, 2005, 101, 247-258.	9.9	130
56	In situ characterization of CD4+ T cell behavior in mucosal and systemic lymphoid tissues during the induction of oral priming and tolerance. Journal of Experimental Medicine, 2005, 201, 1815-1823.	8.5	147
57	Evaluation of Generation 2 and 3 Poly(Propylenimine) Dendrimers for the Potential Cellular Delivery of Antisense Oligonucleotides Targeting the Epidermal Growth Factor Receptor. Pharmaceutical Research, 2004, 21, 458-466.	3.5	81
58	Gene Transfer with Three Amphiphilic Glycol Chitosans—the Degree of Polymerisation is the Main Controller of Transfection Efficiency. Journal of Drug Targeting, 2004, 12, 527-539.	4.4	40
59	Quantification of β-galactosidase activity after non-viral transfection in vivo. Journal of Controlled Release, 2003, 91, 201-208.	9.9	21
60	The lower-generation polypropylenimine dendrimers are effective gene-transfer agents. Pharmaceutical Research, 2002, 19, 960-967.	3.5	288