Kuno Kooser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9178931/publications.pdf

Version: 2024-02-01

623734 752698 46 498 14 20 h-index citations g-index papers 46 46 46 769 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Intramolecular photoelectron diffraction in the gas phase. Journal of Chemical Physics, 2013, 139, 124306.	3.0	39
2	Molecular fragmentation of pyrimidine derivatives following site-selective carbon core ionization. Journal of Electron Spectroscopy and Related Phenomena, 2011, 184, 119-124.	1.7	37
3	Ultrafast Coulomb explosion of a diiodomethane molecule induced by an X-ray free-electron laser pulse. Physical Chemistry Chemical Physics, 2017, 19, 19707-19721.	2.8	27
4	Fragmentation patterns of core ionized uracil. International Journal of Mass Spectrometry, 2011, 306, 82-90.	1.5	24
5	Fragmentation Dynamics of Doubly Charged Methionine in the Gas Phase. Journal of Physical Chemistry A, 2014, 118, 1374-1383.	2.5	22
6	A comparative study of dissociation of thymidine molecules following valence or core photoionization. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 215102.	1.5	20
7	Soft x-ray ionization induced fragmentation of glycine. Journal of Chemical Physics, 2014, 140, 234305.	3.0	20
8	Near ambient pressure X-ray photoelectron - and impedance spectroscopy study of NiO - Ce0.9Gd0.1O2-Î′ anode reduction using a novel dual-chamber spectroelectrochemical cell. Journal of Power Sources, 2018, 378, 589-596.	7.8	20
9	Real-time observation of X-ray-induced intramolecular and interatomic electronic decay in CH2I2. Nature Communications, 2019, 10, 2186.	12.8	19
10	Gas-phase endstation of electron, ion and coincidence spectroscopies for diluted samples at the FinEstBeAMS beamline of the MAXâ€IV 1.5â€GeV storage ring. Journal of Synchrotron Radiation, 2020, 27, 1080-1091.	2.4	19
11	Solvothermal synthesis derived Co-Ga codoped ZnO diluted magnetic degenerated semiconductor nanocrystals. Journal of Alloys and Compounds, 2018, 763, 164-172.	5.5	17
12	Ionization-site effects on the photofragmentation of chloro- and bromoacetic acid molecules. Physical Review A, 2015, 92, .	2.5	16
13	Following the Birth of a Nanoplasma Produced by an Ultrashort Hard-X-Ray Laser in Xenon Clusters. Physical Review X, 2018, 8, .	8.9	16
14	Fragmentation patterns of 4(5)â€nitroimidazole and 1â€methylâ€5â€nitroimidazole—The effect of the methylation. Journal of Mass Spectrometry, 2017, 52, 770-776.	1.6	15
15	Operando high-temperature near-ambient pressure X-ray photoelectron spectroscopy and impedance spectroscopy study of <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:miow><mml:mi>N</mml:mi><mml:mi></mml:mi><mml:mi><mml:mi>e</mml:mi></mml:mi>e<mml:mi></mml:mi>e<mml:mi></mml:mi>eeeeeeeeee<</mml:miow></mml:math>	7.1 nml:mn> <td>15 /mml:msub><r< td=""></r<></td>	15 /mml:msub> <r< td=""></r<>
16	International Journal of Hydrogen Energy, 2020, 45, 25286-25298. Fragmentation of thymidine induced by ultraviolet photoionization and thermal degradation. International Journal of Mass Spectrometry, 2013, 353, 7-11.	1.5	14
17	Dissociation Pathways in the Cysteine Dication after Site-Selective Core Ionization. Journal of Physical Chemistry B, 2014, 118, 11688-11695.	2.6	14
18	Analysis of electronic structure and its effect on magnetic properties in (001) and (110) oriented La0.7Sr0.3MnO3thin films. Journal of Physics Condensed Matter, 2013, 25, 376003.	1.8	13

#	Article	IF	CITATIONS
19	Vibrationally Resolved B 1s Photoionization Cross Section of BF ₃ . Journal of Physical Chemistry A, 2015, 119, 5971-5978.	2.5	12
20	Facile synthesis of magnetically separable CoFe2O4/Ag2O/Ag2CO3 nanoheterostructures with high photocatalytic performance under visible light and enhanced stability against photodegradation. Journal of Environmental Chemical Engineering, 2017, 5, 3455-3462.	6.7	12
21	A detailed investigation of single-photon laser enabled Auger decay in neon. New Journal of Physics, 2019, 21, 113036.	2.9	12
22	Vibrationally resolved C 1s photoionization cross section of CF ₄ . Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 124032.	1.5	11
23	Persistent photoinduced magnetization in the coexisting spin-glass and ferromagnetic phases of Pr _{0.9} Ca _{0.1} MnO ₃ thin film. Journal of Physics Condensed Matter, 2011, 23, 466002.	1.8	10
24	Photofragmentation of Serine Following C 1s Core Ionizationâ€"Comparison with Cysteine. Journal of Physical Chemistry A, 2016, 120, 5419-5426.	2.5	9
25	Comparison of VUV radiation induced fragmentation of thymidine and uridine nucleosides – The effect of methyl and hydroxyl groups. International Journal of Mass Spectrometry, 2014, 370, 96-100.	1.5	8
26	Resonant Auger electron–photoion coincidence study of the fragmentation dynamics of an acrylonitrile molecule. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 235103.	1.5	7
27	Full-dimensional theoretical description of vibrationally resolved valence-shell photoionization of H2O. Structural Dynamics, 2019, 6, 054101.	2.3	7
28	Substrate-induced effects in the creation and decay of potassium 2p core excitations in ultrathin films of KCl on copper. Journal of Physics Condensed Matter, 2008, 20, 145206.	1.8	6
29	Gas-phase study on uridine: Conformation and X-ray photofragmentation. Journal of Chemical Physics, 2015, 142, 194303.	3.0	6
30	Density functional simulation of resonant inelastic X-ray scattering experiments in liquids: acetonitrile. Physical Chemistry Chemical Physics, 2016, 18, 26026-26032.	2.8	6
31	Photo-ionization and fragmentation of Sc3N@C80 following excitation above the Sc K-edge. Journal of Chemical Physics, 2019, 151, 104308.	3.0	5
32	Photofragmentation of gas-phase acetic acid and acetamide clusters in the vacuum ultraviolet region. Journal of Chemical Physics, 2017, 147, 194302.	3.0	3
33	Photodissociation dynamics of halogenated aromatic molecules: the case of core-ionized tetrabromothiophene. Physical Chemistry Chemical Physics, 2021, 23, 21249-21261.	2.8	3
34	Resonant inelastic x-ray scattering and UV–VUV luminescence at the Be 1s edge in BeO. Journal of Physics Condensed Matter, 2010, 22, 375505.	1.8	2
35	The sub-bandgap energy loss satellites in the RIXS spectra of beryllium compounds. Journal of Electron Spectroscopy and Related Phenomena, 2011, 184, 366-370.	1.7	2
36	Fragmentation of imidazole, pyrimidine and purine induced by core ionization: Significance of small-scale chemical environment. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356, 283-289.	3.9	2

#	Article	IF	CITATIONS
37	Site-selective bond scission of methylbenzoate following core excitation. Physical Chemistry Chemical Physics, 2018, 20, 9591-9599.	2.8	2
38	Study of Electrochemical and Crystallographic Changes During Initial Stabilization of La _{0.75} Sr _{0.25} Cr _{0.5} Mn _{0.3} Ni _{0.2} O _{3â^²} <td>ub>&#> <su</td><td>ɪb>͡ᡌ</sub></i</td></tr><tr><td>39</td><td>Electronic structure of LBO and BBO as revealed by boron and oxygen RIXS spectra. Journal of Electron Spectroscopy and Related Phenomena, 2013, 188, 32-37.</td><td>1.7</td><td>1</td></tr><tr><td>40</td><td>Molecular dynamics of photodissociation: towards more complex systems. Journal of Physics: Conference Series, 2015, 635, 112105.</td><td>0.4</td><td>1</td></tr><tr><td>41</td><td>Photoinduced intermolecular dynamics and subsequent fragmentation in VUV-ionized acetamide clusters. Journal of Chemical Physics, 2016, 145, 124313.</td><td>3.0</td><td>1</td></tr><tr><td>42</td><td>Operando NAP-HT-XPS and Impedance Spectroscopy Study of Pulsed Laser Deposited Ni-Ce0.9Gd0.1O2-δ Solid Oxide Fuel Cell Electrode. ECS Transactions, 2019, 91, 555-561.</td><td>0.5</td><td>1</td></tr><tr><td>43</td><td>Dissociation dynamics of doubly charged CO<sub>2</sub>and CS<sub>2</sub>molecules as studied by electron-ion coincidence spectroscopy and simulations. Journal of Physics: Conference Series, 2012, 388, 022084.</td><td>0.4</td><td>0</td></tr><tr><td>44</td><td>Time-resolved dynamics of thiophene dication – probing parent molecule survival times and multi-step dissociation processes of cyclic molecules by free-electron-laser experiments combined with theoretical simulations. Journal of Physics: Conference Series, 2020, 1412, 112007.</td><td>0.4</td><td>0</td></tr><tr><td>45</td><td>Influence of the Ti Content on the Electrochemical Performance and Surface Properties of (La0.6Sr0.4)0.99Co1â<sup>-2</sup> xTixO3â<sup>-2</sup> Î<sup>-2</sup> Oxygen Electrode. ECS Transactions, 2021, 103, 1433-1444.</td><td>0.5</td><td>0</td></tr><tr><td>46</td><td>Femtosecond Time-resolved Study on Nanoplasma Dynamics of Xenon Clusters Irradiated with High Intensity Hard X-rays at SACL., 2016,,.</td><td></td><td>O</td></tr></tbody></table></td>	ub> &#> <su</td><td>ɪb>͡ᡌ</sub></i</td></tr><tr><td>39</td><td>Electronic structure of LBO and BBO as revealed by boron and oxygen RIXS spectra. Journal of Electron Spectroscopy and Related Phenomena, 2013, 188, 32-37.</td><td>1.7</td><td>1</td></tr><tr><td>40</td><td>Molecular dynamics of photodissociation: towards more complex systems. Journal of Physics: Conference Series, 2015, 635, 112105.</td><td>0.4</td><td>1</td></tr><tr><td>41</td><td>Photoinduced intermolecular dynamics and subsequent fragmentation in VUV-ionized acetamide clusters. Journal of Chemical Physics, 2016, 145, 124313.</td><td>3.0</td><td>1</td></tr><tr><td>42</td><td>Operando NAP-HT-XPS and Impedance Spectroscopy Study of Pulsed Laser Deposited Ni-Ce0.9Gd0.1O2-δ Solid Oxide Fuel Cell Electrode. ECS Transactions, 2019, 91, 555-561.</td><td>0.5</td><td>1</td></tr><tr><td>43</td><td>Dissociation dynamics of doubly charged CO<sub>2</sub>and CS<sub>2</sub>molecules as studied by electron-ion coincidence spectroscopy and simulations. Journal of Physics: Conference Series, 2012, 388, 022084.</td><td>0.4</td><td>0</td></tr><tr><td>44</td><td>Time-resolved dynamics of thiophene dication – probing parent molecule survival times and multi-step dissociation processes of cyclic molecules by free-electron-laser experiments combined with theoretical simulations. Journal of Physics: Conference Series, 2020, 1412, 112007.</td><td>0.4</td><td>0</td></tr><tr><td>45</td><td>Influence of the Ti Content on the Electrochemical Performance and Surface Properties of (La0.6Sr0.4)0.99Co1â<sup>-2</sup> xTixO3â<sup>-2</sup> Î<sup>-2</sup> Oxygen Electrode. ECS Transactions, 2021, 103, 1433-1444.</td><td>0.5</td><td>0</td></tr><tr><td>46</td><td>Femtosecond Time-resolved Study on Nanoplasma Dynamics of Xenon Clusters Irradiated with High Intensity Hard X-rays at SACL., 2016,,.</td><td></td><td>O</td></tr></tbody></table>	