
Hiroyuki Morimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9178892/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Broadly Applicable Copper Reagent for Trifluoromethylations and Perfluoroalkylations of Aryl Iodides and Bromides. Angewandte Chemie - International Edition, 2011, 50, 3793-3798.	13.8	442
2	A Bench-Stable Homodinuclear Ni ₂ â^'Schiff Base Complex for Catalytic Asymmetric Synthesis of α-Tetrasubstituted <i>anti</i> -α,β-Diamino Acid Surrogates. Journal of the American Chemical Society, 2008, 130, 2170-2171.	13.7	298
3	Direct Catalytic Asymmetric Mannich-type Reaction of Hydroxyketone Using a Et2Zn/Linked-BINOL Complex: Synthesis of Eitheranti- orsyn-β-Amino Alcohols. Journal of the American Chemical Society, 2004, 126, 8777-8785.	13.7	174
4	Stereodivergent Direct Catalytic Asymmetric Mannichâ€Type Reactions of αâ€Isothiocyanato Ester with Ketimines. Angewandte Chemie - International Edition, 2011, 50, 4382-4385.	13.8	149
5	Lanthanum(III) Triflate Catalyzed Direct Amidation of Esters. Organic Letters, 2014, 16, 2018-2021.	4.6	137
6	Construction of Contiguous Tetrasubstituted Chiral Carbon Stereocenters via Direct Catalytic Asymmetric Aldol Reaction of α-Isothiocyanato Esters with Ketones. Journal of the American Chemical Society, 2009, 131, 17082-17083.	13.7	133
7	Mixed Laâ^'Li Heterobimetallic Complexes for Tertiary Nitroaldol Resolution. Journal of the American Chemical Society, 2006, 128, 11776-11777.	13.7	119
8	Lanthanum Aryloxide/Pybox-Catalyzed Direct Asymmetric Mannich-Type Reactions Using a Trichloromethyl Ketone as a Propionate Equivalent Donor. Journal of the American Chemical Society, 2007, 129, 9588-9589.	13.7	113
9	Direct Catalytic Alcoholysis of Unactivated 8-Aminoquinoline Amides. ACS Catalysis, 2017, 7, 3157-3161.	11.2	90
10	Mechanistic Studies and Expansion of the Substrate Scope of Direct Enantioselective Alkynylation of α-Ketiminoesters Catalyzed by Adaptable (Phebox)Rhodium(III) Complexes. Journal of the American Chemical Society, 2016, 138, 6194-6203.	13.7	87
11	Rhâ€Catalyzed Direct Enantioselective Alkynylation of αâ€Ketiminoesters. Chemistry - A European Journal, 2013, 19, 8417-8420.	3.3	85
12	Catalytic Asymmetric Aza-Moritaâ^'Baylisâ^'Hillman Reaction of Methyl Acrylate: Role of a Bifunctional La(O- <i>i</i> Pr) ₃ /Linked-BINOL Complex. Journal of the American Chemical Society, 2010, 132, 11988-11992.	13.7	76
13	Non-C2-Symmetric, Chirally Economical, and Readily Tunable Linked-binols: Design and Application in a Direct Catalytic Asymmetric Mannich-Type Reaction. Angewandte Chemie - International Edition, 2005, 44, 3470-3474.	13.8	70
14	Chiral γâ€Amino Amide Synthesis by Heterobimetallic Lanthanum/Lithium/Pyboxâ€Catalyzed Direct Asymmetric Mannichâ€Type Reactions of αâ€Keto Anilides. Angewandte Chemie - International Edition, 2008, 47, 6847-6850.	13.8	70
15	Trichloromethyl Ketones as Synthetically Versatile Donors: Application in Direct Catalytic Mannich-Type Reactions and the Stereoselective Synthesis of Azetidines. Angewandte Chemie - International Edition, 2006, 45, 3146-3150.	13.8	67
16	Microwaveâ€Assisted Deacylation of Unactivated Amides Using Ammoniumâ€Saltâ€Accelerated Transamidation. Angewandte Chemie - International Edition, 2012, 51, 8564-8567.	13.8	61
17	Lewis Base Assisted BrÃ,nsted Base Catalysis: Bidentate Phosphine Oxides as Activators and Modulators of BrÃ,nsted Basic Lanthanum–Aryloxides. Angewandte Chemie - International Edition, 2008, 47, 9125-9129.	13.8	52
18	Catalytic Enantioselective Decarboxylative Mannich-Type Reaction of <i>N</i> -Unprotected Isatin-Derived Ketimines. Organic Letters, 2018, 20, 5393-5397.	4.6	42

#	Article	IF	CITATIONS
19	Recent Progress on Catalytic Addition Reactions to <i>N</i> -Unsubstituted Imines. ACS Catalysis, 2020, 10, 6924-6951.	11.2	41
20	Catalytic asymmetric Michael reactions of dibenzyl malonate to α,β-unsaturated N-acylpyrroles using a La(O-iPr)3/Ph-linked-BINOL complex. Tetrahedron Letters, 2007, 48, 2815-2818.	1.4	40
21	Direct Access to Nâ€Unprotected α―and/or βâ€Tetrasubstituted Amino Acid Esters via Direct Catalytic Mannichâ€Type Reactions Using Nâ€Unprotected Trifluoromethyl Ketimines. Chemistry - A European Journal, 2017, 23, 17022-17028.	3.3	40
22	3â€Monoâ€Substituted BINOL Phosphoric Acids as Effective Organocatalysts in Direct Enantioselective Friedel–Craftsâ€Type Alkylation of Nâ€Unprotected αâ€Ketiminoester. Chemistry - A European Journal, 2018, 24, 15211-15214.	3.3	39
23	Diethylenetriamine-Mediated Direct Cleavage of Unactivated Carbamates and Ureas. Organic Letters, 2016, 18, 6062-6065.	4.6	36
24	Direct access to N-unprotected tetrasubstituted propargylamines via direct catalytic alkynylation of N-unprotected trifluoromethyl ketimines. Chemical Communications, 2017, 53, 6319-6322.	4.1	35
25	Mixed La–Li heterobimetallic complexes for tertiary nitroaldol resolution. Tetrahedron, 2009, 65, 5030-5036.	1.9	34
26	Catalytic Asymmetric Epoxidation of α,β-Unsaturated Esters with Chiral Yttrium–Biaryldiol Complexes. Chemistry - an Asian Journal, 2007, 2, 257-264.	3.3	29
27	Scandium(III) Triflate Catalyzed Direct Synthesis of <i>N</i> -Unprotected Ketimines. Organic Letters, 2020, 22, 120-125.	4.6	28
28	Cleavage of unactivated amide bonds by ammonium salt-accelerated hydrazinolysis. Chemical Communications, 2014, 50, 12623-12625.	4.1	25
29	A Short Scalable Route to (â^')â€Ì±â€Kainic Acid Using Ptâ€Catalyzed Direct Allylic Amination. Chemistry - A European Journal, 2015, 21, 3937-3941.	3.3	25
30	Boronic Acid Accelerated Three-Component Reaction for the Synthesis of α-Sulfanyl-Substituted Indole-3-acetic Acids. Organic Letters, 2017, 19, 5794-5797.	4.6	18
31	Catalytic Enantioselective Strecker Reaction of Isatin-Derived N-Unsubstituted Ketimines. Organic Letters, 2021, 23, 4553-4558.	4.6	16
32	Ammonium Salt-Accelerated Hydrazinolysis of Unactivated Amides: Mechanistic Investigation and Application to a Microwave Flow Process. Organic Process Research and Development, 2019, 23, 588-594.	2.7	15
33	C–C Bond Cleavage of Unactivated 2-Acylimidazoles. Journal of Organic Chemistry, 2020, 85, 11592-11606.	3.2	15
34	Rhodium(I)/Chiral Dieneâ€Catalyzed Enantioselective Addition of Boronic Acids to <i>N</i> â€Unsubstituted Isatinâ€Derived Ketimines. Chemistry - an Asian Journal, 2020, 15, 499-502.	3.3	14
35	A Convenient Preparation Method for Benzophenone Imine Catalyzed by Tetrabutylammonium Fluoride. Organic Process Research and Development, 2019, 23, 1718-1724.	2.7	13
36	Recent Progress towards the Use of Benzophenone Imines as an Ammonia Equivalent. Chemistry Letters, 2020, 49, 497-504.	1.3	11

Нігочикі Могімото

#	Article	IF	CITATIONS
37	A novel anti-microtubule agent with carbazole and benzohydrazide structures suppresses tumor cell growth in vivo. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 1676-1684.	2.4	9
38	Mechanistic Studies of Nickel(II)-Catalyzed Direct Alcoholysis of 8-Aminoquinoline Amides. Heterocycles, 2020, 101, 471.	0.7	5
39	Direct Enantioselective Alkynylation of α-Ketoesters and α-Ketiminoesters Catalyzed by [bis(Oxazoline)phenyl]rhodium(III) Complexes. Heterocycles, 2017, 95, 637.	0.7	5
40	Identification of candidate molecular targets of the novel antineoplastic antimitotic NP-10. Scientific Reports, 2019, 9, 16825.	3.3	4
41	Development of Direct Enantioselective Alkynylation of α-Ketoester and α-Ketiminoesters Catalyzed by Phenylbis(oxazoline)Rh(III) Complexes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 226-240.	0.1	3
42	Catalytic Asymmetric Epoxidation of α-Methyl α,β-Unsaturated Anilides as Ester Surrogates. Synlett, 2006, 2006, 3529-3532.	1.8	1
43	Synthesis of 1-Tetrasubstituted 2,2,2-Trifluoroethylamine Derivatives <i>via</i> Palladium-Catalyzed Allylation of <i>sp</i> ³ C–H Bonds. Chemical and Pharmaceutical Bulletin, 2017, 65, 1089-1092.	1.3	1
44	Direct Catalytic Asymmetric Mannich-Type Reaction of Hydroxyketone Using a Et2Zn/Linked-BINOL Complex: Synthesis of Either anti- or syn-β-Amino Alcohols ChemInform, 2004, 35, no.	0.0	0
45	Non-C2-Symmetric, Chirally Economical, and Readily Tunable Linked-Binols: Design and Application in a Direct Catalytic Asymmetric Mannich-Type Reaction ChemInform, 2005, 36, no.	0.0	0
46	Direct Catalytic anti-Markovnikov Addition Reactions of Oxygen Nucleophiles to Simple Alkenes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2014, 72, 1402-1403.	0.1	0
47	Development and Integration of New Green Reactions. , 2021, , 275-295.		0
48	Development of Greener Catalytic Synthetic Methods of Nitrogen-Containing Compounds Using <i>N</i> -Unprotected Ketimines. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2022, 80, 2-13.	0.1	0