
Steven E Ingebritsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/917861/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Permeability of the continental crust: Implications of geothermal data and metamorphic systems. Reviews of Geophysics, 1999, 37, 127-150.	23.0	553
2	Changes in permeability caused by transient stresses: Field observations, experiments, and mechanisms. Reviews of Geophysics, 2012, 50, .	23.0	340
3	Geological implications of a permeability-depth curve for the continental crust. Geology, 1999, 27, 1107.	4.4	213
4	Multiphase groundwater flow near cooling plutons. Journal of Geophysical Research, 1997, 102, 12235-12252.	3.3	200
5	Numerical simulation of magmatic hydrothermal systems. Reviews of Geophysics, 2010, 48, .	23.0	146
6	Magmatic activity beneath the quiescent Three Sisters volcanic center, central Oregon Cascade Range, USA. Geophysical Research Letters, 2002, 29, 26-1.	4.0	134
7	Use of Precipitation and Groundwater Isotopes to Interpret Regional Hydrology on a Tropical Volcanic Island: Kilauea Volcano Area, Hawaii. Water Resources Research, 1996, 32, 3525-3537.	4.2	121
8	Potentially exploitable supercritical geothermal resources in the ductile crust. Nature Geoscience, 2017, 10, 140-144.	12.9	96
9	Groundwater flow, heat transport, and water table position within volcanic edifices: Implications for volcanic processes in the Cascade Range. Journal of Geophysical Research, 2003, 108, .	3.3	92
10	Vaporâ€Dominated Zones Within Hydrothermal Systems: Evolution and Natural State. Journal of Geophysical Research, 1988, 93, 13635-13655.	3.3	83
11	Heat Flow and Hydrothermal Circulation in the Cascade Range, North-Central Oregon. Science, 1989, 243, 1458-1462.	12.6	78
12	Time-variation of hydrothermal discharge at selected sites in the western United States: implications for monitoring. Journal of Volcanology and Geothermal Research, 2001, 111, 1-23.	2.1	77
13	The hydrogeology of Kilauea volcano. Geothermics, 1993, 22, 255-270.	3.4	73
14	Geyser periodicity and the response of geysers to deformation. Journal of Geophysical Research, 1996, 101, 21891-21905.	3.3	66
15	Numerical models of caldera deformation: Effects of multiphase and multicomponent hydrothermal fluid flow. Journal of Geophysical Research, 2009, 114, .	3.3	64
16	Rates and patterns of groundwater flow in the Cascade Range Volcanic Arc, and the effect on subsurface temperatures. Journal of Geophysical Research, 1992, 97, 4599-4627.	3.3	59
17	Permeability of continental crust influenced by internal and external forcing. Geofluids, 2008, 8, 128-139.	0.7	59
18	A Quantitative Analysis of the Lassen Hydrothermal System, North Central California. Water Resources Research, 1985, 21, 853-868.	4.2	58

STEVEN E INGEBRITSEN

#	Article	IF	CITATIONS
19	Hydrothermal heat discharge in the Cascade Range, northwestern United States. Journal of Volcanology and Geothermal Research, 2010, 196, 208-218.	2.1	46
20	Thermal effect of climate change on groundwaterâ€fed ecosystems. Water Resources Research, 2017, 53, 3341-3351.	4.2	38
21	Magmatic intrusion west of Three Sisters, central Oregon, USA: The perspective from spring geochemistry. Geology, 2004, 32, 69.	4.4	36
22	Fluid flow and heat transport near the critical point of H2O. Geophysical Research Letters, 1994, 21, 2199-2202.	4.0	32
23	Episodic thermal perturbations associated with groundwater flow: An example from Kilauea Volcano, Hawaii. Journal of Geophysical Research, 2002, 107, ECV 13-1-ECV 13-10.	3.3	30
24	The hydrothermal system at Newberry Volcano, Oregon. Journal of Geophysical Research, 1988, 93, 10149-10162.	3.3	29
25	Earthquake Hydrogeology. Water Resources Research, 2019, 55, 5212-5216.	4.2	29
26	Understanding heat and groundwater flow through continental flood basalt provinces: insights gained from alternative models of permeability/depth relationships for the Columbia Plateau, USA. Geofluids, 2015, 15, 120-138.	0.7	23
27	Causes of distal volcano-tectonic seismicity inferred from hydrothermal modeling. Journal of Volcanology and Geothermal Research, 2017, 345, 98-108.	2.1	23
28	Hydrothermal response to a volcanoâ€ŧectonic earthquake swarm, Lassen, California. Geophysical Research Letters, 2015, 42, 9223-9230.	4.0	20
29	Evaluating geothermal and hydrogeologic controls on regional groundwater temperature distribution. Water Resources Research, 2016, 52, 1328-1344.	4.2	20
30	Groundwater Inflow Toward a Preheated Volcanic Conduit: Application to the 2018 Eruption at Kīlauea Volcano, Hawai'i. Journal of Geophysical Research: Solid Earth, 2019, 124, 1498-1506.	3.4	16
31	Hydrothermal monitoring in a quiescent volcanic arc: Cascade Range, northwestern United States. Geofluids, 2014, 14, 326-346.	0.7	15
32	Modeling the Formation of Porphyry-Copper Ores. Science, 2012, 338, 1551-1552.	12.6	14
33	Ongoing hydrothermal heat loss from the 1912 ash-flow sheet, Valley of Ten Thousand Smokes, Alaska. Journal of Volcanology and Geothermal Research, 2005, 143, 279-291.	2.1	9
34	The Lassen hydrothermal system. American Mineralogist, 2016, 101, 343-354.	1.9	8
35	Potential for increased hydrothermal arsenic flux during volcanic unrest: Implications for California water supply. Applied Geochemistry, 2019, 108, 104384.	3.0	8
36	Multi-year high-frequency hydrothermal monitoring of selected high-threat Cascade Range volcanoes. Journal of Volcanology and Geothermal Research, 2018, 356, 24-35.	2.1	7

#	Article	IF	CITATIONS
37	Modeling Groundwater Inflow to the New Crater Lake at Kīlauea Volcano, Hawai'i. Ground Water, 2021, 59, 7-15.	1.3	6
38	The Influence of Episodic Shallow Magma Degassing on Heat and Chemical Transport in Volcanic Hydrothermal Systems. Geophysical Research Letters, 2018, 45, 3068-3076.	4.0	4
39	Post Audit of Simulated Groundwater Flow to a Shortâ€Lived (2019 to 2020) Crater Lake at KÄ«lauea Volcano. Ground Water, 2022, 60, 64-70.	1.3	4
40	Developing a new, passive diffusion sampler suite to detect helium anomalies associated with volcanic unrest. Bulletin of Volcanology, 2015, 77, 1.	3.0	3