Margaret A Wheatley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/917847/publications.pdf

Version: 2024-02-01

42 papers 1,202 citations

394421 19 h-index 377865 34 g-index

42 all docs 42 docs citations

42 times ranked 1325 citing authors

#	Article	IF	Citations
1	Development of a Dual Drug-Loaded, Surfactant-Stabilized Contrast Agent Containing Oxygen. Polymers, 2022, 14, 1568.	4.5	3
2	Emerging Applications of Ultrasound-Contrast Agents in Radiation Therapy. Ultrasound in Medicine and Biology, 2021, 47, 1465-1474.	1.5	17
3	Gemcitabine-loaded microbubble system for ultrasound imaging and therapy. Acta Biomaterialia, 2021, 130, 385-394.	8.3	21
4	Shaping the synthesis of surfactant-stabilized oxygen microbubbles to accommodate encapsulated drug. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112049.	5.0	5
5	Incubation Method for Loading Lonidamine in Oxygen Microbubbles for Targeted Drug Delivery. , 2020,		O
6	LC-MS based stability-indicating method for studying the degradation of lonidamine under physical and chemical stress conditions. Research in Pharmaceutical Sciences, 2020, 15, 312.	1.8	5
7	Breast Cancer Brain Metastasis Response to Radiation After Microbubble Oxygen Delivery in a Murine Model. Journal of Ultrasound in Medicine, 2019, 38, 3221-3228.	1.7	26
8	Preserving the Integrity of Surfactant-Stabilized Microbubble Membranes for Localized Oxygen Delivery. Langmuir, 2019, 35, 10068-10078.	3.5	16
9	Sensitization of Hypoxic Tumors to Radiation Therapy Using Ultrasound-Sensitive Oxygen Microbubbles. International Journal of Radiation Oncology Biology Physics, 2018, 101, 88-96.	0.8	78
10	Manipulating multifaceted microbubble shell composition to target both TRAILâ€sensitive and resistant cells. Journal of Biomedical Materials Research - Part A, 2018, 106, 1903-1915.	4.0	9
11	Strategies for neurotrophinâ€3 and chondroitinase ABC release from freezeâ€cast chitosan–alginate nerveâ€guidance scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 285-294.	2.7	28
12	Drug Delivery from a Multi-faceted Ultrasound Contrast Agent: Influence of Shell Composition. Molecular Pharmaceutics, 2017, 14, 3448-3456.	4.6	12
13	Shell effects on acoustic performance of a drugâ€delivery system activated by ultrasound. Journal of Biomedical Materials Research - Part A, 2017, 105, 3189-3196.	4.0	12
14	Notice of Removal: Sensitization of hypoxic tumors to radiation therapy using ultrasound sensitive oxygen microbubbles. , 2017 , , .		0
15	Ultrasound microbubble targeted gemcitabine delivery for pancreatic cancer treatment., 2017,,.		1
16	Balancing stealth and echogenic properties in an ultrasound contrast agent with drug delivery potential. Biomaterials, 2016, 103, 197-206.	11.4	20
17	A multifactorial analysis of complex pharmaceutical platforms: an application of design of experiments to targetable polyacrylamide and ultrasound contrast agents. Polymers for Advanced Technologies, 2015, 26, 898-905.	3.2	2
18	Multimodal imaging: Nanocrystal loaded PLA-shelled contrast agents. , 2015, , .		0

#	Article	IF	Citations
19	Nanoparticle Loaded Polymeric Microbubbles as Contrast Agents for Multimodal Imaging. Langmuir, 2015, 31, 11858-11867.	3.5	37
20	Preservation of imaging capability in sensitive ultrasound contrast agents after indirect plasma sterilization. International Journal of Pharmaceutics, 2015, 494, 146-151.	5.2	2
21	Multi-modal detection of colon malignancy by NIR-tagged recognition polymers and ultrasound contrast agents. International Journal of Pharmaceutics, 2015, 478, 504-516.	5.2	7
22	Development of an ultrasound sensitive oxygen carrier for oxygen delivery to hypoxic tissue. International Journal of Pharmaceutics, 2015, 478, 361-367.	5.2	66
23	Hierarchical Structures: Ice-Templated Scaffolds with Microridged Pores Direct DRG Neurite Growth (Adv. Funct. Mater. 23/2012). Advanced Functional Materials, 2012, 22, 4846-4846.	14.9	0
24	Cellular signal transduction can be induced by TRAIL conjugated to microcapsules. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2602-2611.	4.0	13
25	Iceâ€√emplated Scaffolds with Microridged Pores Direct DRG Neurite Growth. Advanced Functional Materials, 2012, 22, 4920-4923.	14.9	63
26	Disposition of Ultrasound Sensitive Polymeric Drug Carrier in a Rat Hepatocellular Carcinoma Model. Academic Radiology, 2011, 18, 1341-1348.	2.5	57
27	Doxorubicin and paclitaxel loaded microbubbles for ultrasound triggered drug delivery. International Journal of Pharmaceutics, 2011, 414, 161-170.	5.2	138
28	Targeted binding of PEGâ€lipid modified polymer ultrasound contrast agents with tiered surface architecture. Biotechnology and Bioengineering, 2010, 106, 501-506.	3.3	10
29	Preserving enhancement in freeze-dried contrast agent ST68: Examination of excipients. International Journal of Pharmaceutics, 2010, 396, 30-38.	5.2	9
30	Preclinical Acute Toxicology Study of Surfactant-Stabilized Ultrasound Contrast Agents in Adult Rats. International Journal of Toxicology, 2010, 29, 32-39.	1.2	9
31	Nano-sized ultrasound contrast agent: salting-out method. Molecular Imaging, 2010, 9, 96-107.	1.4	3
32	Long-Term Recordings of Multiple, Single-Neurons for Clinical Applications: The Emerging Role of the Bioactive Microelectrode. Materials, 2009, 2, 1762-1794.	2.9	13
33	Ultrasound triggered cell death in vitro with doxorubicin loaded poly lactic-acid contrast agents. Ultrasonics, 2009, 49, 628-633.	3.9	34
34	Polymeric Ultrasound Contrast Agents Targeted to Integrins:Â Importance of Process Methods and Surface Density of Ligands. Biomacromolecules, 2007, 8, 516-522.	5.4	37
35	Comparison of in vitro and in vivo acoustic response of a novel 50:50 PLGA contrast agent. Ultrasonics, 2006, 44, 360-367.	3.9	71
36	Surfactant-stabilized contrast agent on the nanoscale for diagnostic ultrasound imaging. Ultrasound in Medicine and Biology, 2006, 32, 83-93.	1.5	70

#	Article	IF	CITATIONS
37	A numerical study of the generation and propagation of thermoacoustic waves in water. Physics of Fluids, 2004, 16, 3786-3794.	4.0	10
38	Development of a novel method for synthesis of a polymeric ultrasound contrast agent. Journal of Biomedical Materials Research Part B, 2003, 66A, 347-355.	3.1	122
39	Optimization of spray drying by factorial design for production of hollow microspheres for ultrasound imaging. Journal of Biomedical Materials Research Part B, 2001, 56, 333-341.	3.1	42
40	Influence of environmental conditions on a new surfactant-based contrast agent: ST68. Ultrasound in Medicine and Biology, 2000, 26, 621-628.	1.5	39
41	Preparation and characterization of hollow microcapsules for use as ultrasound contrast agents. Polymer Engineering and Science, 1999, 39, 2242-2255.	3.1	52
42	Langmuir Trough Study of Surfactant Mixtures Used in the Production of a New Ultrasound Contrast Agent Consisting of Stabilized Microbubbles. The Journal of Physical Chemistry, 1996, 100, 13815-13821.	2.9	43