MarÃ-a Elena GonzÃ;lez-Nðñez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9178029/publications.pdf

Version: 2024-02-01

46 papers

1,404 citations

304743 22 h-index 345221 36 g-index

53 all docs 53 docs citations

53 times ranked

1343 citing authors

#	Article	IF	Citations
1	Silver-Catalyzed C-C Bond Formation Between Methane and Ethyl Diazoacetate in Supercritical CO ₂ . Science, 2011, 332, 835-838.	12.6	228
2	Regioselective oxyfunctionalization of unactivated tertiary and secondary carbon-hydrogen bonds of alkylamines by methyl(trifluoromethyl)dioxirane in acid medium. Journal of the American Chemical Society, 1993, 115, 7250-7253.	13.7	99
3	Thermally and photochemically initiated radical chain decomposition of ketone-free methyl(trifluoromethyl)dioxirane. Journal of the American Chemical Society, 1991, 113, 7654-7658.	13.7	88
4	Oxidation of acetals, an orthoester, and ethers by dioxiranes through \hat{l}_{\pm} -CH insertion. Tetrahedron Letters, 1992, 33, 4225-4228.	1.4	62
5	Epoxidation of Primary and Secondary Alkenylammonium Salts with Dimethyldioxirane, Methyl(trifluoromethyl)dioxirane, and m-Chloroperbenzoic Acid. A General Synthetic Route to Epoxyalkylamines. Journal of Organic Chemistry, 1995, 60, 3692-3699.	3.2	55
6	Oxidation of Alcohols to Carbonyl Compounds with CrO3·SiO2in Supercritical Carbon Dioxide. Journal of Organic Chemistry, 2006, 71, 1039-1042.	3.2	55
7	Synthesis, Characterization, and Catalysis of \hat{l}^2 3-[(CollO4)W11O31(O2)4],10-the First Keggin-Based True Heteropoly Dioxygen (Peroxo) Anion. Spectroscopic (ESR, IR) Evidence for the Formation of Superoxo Polytungstates. Journal of the American Chemical Society, 1999, 121, 977-984.	13.7	53
8	Oxygen atom insertion into the benzylic carbon-hydrogen bond of (R)-(-)-2-phenylbutane by methyl(trifluoromethyl)dioxirane: an efficient and mild regio- and stereoselective synthesis of (S)-(-)-2-phenyl-2-butanol. Journal of Organic Chemistry, 1992, 57, 953-955.	3.2	48
9	Mechanism of the Oxidation of Sulfides by Dioxiranes. 1. Intermediacy of a 10-S-4 Hypervalent Sulfur Adduct. Journal of the American Chemical Society, 2002, 124, 9154-9163.	13.7	43
10	One-electron reduction of methyl(trifluoromethyl)dioxirane by iodide ion. Evidence for an electron-transfer chain reaction mediated by the superoxide ion. Journal of the American Chemical Society, 1992, 114, 8345-8349.	13.7	41
11	Baeyerâ^'Villiger Oxidation with Potassium Peroxomonosulfate Supported on Acidic Silica Gel. Journal of Organic Chemistry, 2005, 70, 10879-10882.	3.2	38
12	Baeyerâ "Villiger Oxidation in Supercritical CO2with Potassium Peroxomonosulfate Supported on Acidic Silica Gel. Journal of Organic Chemistry, 2006, 71, 6432-6436.	3.2	36
13	Oxyfunctionalization of Aliphatic Esters by Methyl(trifluoromethyl)dioxirane. Journal of Organic Chemistry, 1996, 61, 5564-5566.	3.2	34
14	Iodomethane Oxidation by Dimethyldioxirane:Â A New Route to Hypoiodous Acid and Iodohydrines. Organic Letters, 1999, 1, 2125-2128.	4.6	33
15	Oppenauer Oxidation of Secondary Alcohols with 1,1,1-Trifluoroacetone as Hydride Acceptor. Journal of Organic Chemistry, 2007, 72, 9376-9378.	3.2	30
16	A General and Efficient Method for the Monohydroxylation of Alkanes. Angewandte Chemie International Edition in English, 1996, 35, 217-218.	4.4	29
17	Influence of Remote Substituents on the Equatorial/Axial Selectivity in the Monooxygenation of Methylene Câ^'H Bonds of Substituted Cyclohexanes. Journal of the American Chemical Society, 2001, 123, 7487-7491.	13.7	29
18	Epoxidation of Olefins with a Silica-Supported Peracid. Journal of Organic Chemistry, 2012, 77, 6409-6413.	3.2	27

#	Article	IF	Citations
19	The oxidation of alkanes with dimethyldioxirane; a new mechanistic insight. Tetrahedron Letters, 1997, 38, 2373-2376.	1.4	25
20	Baeyer–Villiger oxidation of ketones with a silica-supported peracid in supercritical carbon dioxide under flow conditions. Green Chemistry, 2009, 11, 994.	9.0	25
21	Catalytic Functionalization of Methane and Light Alkanes in Supercritical Carbon Dioxide. Chemistry - A European Journal, 2014, 20, 11013-11018.	3.3	25
22	H-Bonding Interactions in the Epoxidation of Alkenylammonium Salts with Dimethyldioxirane andm-Chloroperbenzoic Acid:Â A Kinetic Study. Journal of Organic Chemistry, 1999, 64, 4705-4711.	3.2	23
23	Oxidation of Sulfides with a Silicaâ€6upported Peracid in Supercritical Carbon Dioxide under Flow Conditions: Tuning Chemoselectivity with Pressure. European Journal of Organic Chemistry, 2010, 2010, 6200-6206.	2.4	23
24	One electron transfer chain decomposition of trifluoroacetone diperoxide: The first 1,2,4,5-tetroxane with O-transfer capability. Tetrahedron Letters, 1992, 33, 5833-5836.	1.4	21
25	Silica-supported HgSO4/H2SO4: a convenient reagent for the hydration of alkynes under mild conditions. Tetrahedron Letters, 2010, 51, 4281-4283.	1.4	21
26	Epoxidation of Olefins with a Silica-Supported Peracid in Supercritical Carbon Dioxide under Flow Conditions. Journal of Organic Chemistry, 2012, 77, 4706-4710.	3.2	20
27	Evidence for the involvement of a sulfurane intermediate in the oxidation of simple sulfides by methyl(trifluoromethyl)dioxirane. Tetrahedron Letters, 1996, 37, 2299-2302.	1.4	18
28	Oxygenation of Alkane Câ^'H Bonds with Methyl (trifluoromethyl) dioxirane: Â Effect of the Substituents and the Solvent on the Reaction Rate. Journal of Organic Chemistry, 2005, 70, 7919-7924.	3.2	18
29	Hyperconjugative Control by Remote Substituents of Diastereoselectivity in the Oxygenation of Hydrocarbons. Organic Letters, 2000, 2, 831-834.	4.6	15
30	Reactions at Interfaces: Oxygenation of <i>n</i> -Butyl Ligands Anchored on Silica Surfaces with Methyl (trifluoromethyl) dioxirane. Journal of Organic Chemistry, 2011, 76, 10129-10139.	3.2	14
31	Analysis of Hybrid Silica Materials with the Aid of Conventional NMR and GC/MS. Analytical Chemistry, 2008, 80, 9355-9359.	6.5	13
32	On the ionizing properties of supercritical carbon dioxide: uncatalyzed electrophilic bromination of aromatics. RSC Advances, 2014, 4, 51016-51021.	3.6	12
33	Photoiodocarboxylation of Activated Câ•C Double Bonds with CO ₂ and Lithium Iodide. Journal of Organic Chemistry, 2018, 83, 13381-13394.	3.2	12
34	Supercritical Carbon Dioxide: A Promoter of Carbon–Halogen Bond Heterolysis. Angewandte Chemie - International Edition, 2013, 52, 13298-13301.	13.8	11
35	Mechanism of the Oxidation of Sulfides by Dioxiranes:Â Conformational Mobility and Transannular Interaction in the Oxidation of Thianthrene 5-Oxide. Journal of Organic Chemistry, 2004, 69, 9090-9099.	3.2	10
36	Oxygen transfer by dissociative electron transfer. Reaction of tetranitromethane with diazo compounds and sulfides. Tetrahedron, 1991, 47, 3773-3778.	1.9	9

#	Article	IF	CITATIONS
37	Eine allgemeine und effiziente Methode zur Monohydroxylierung von Alkanen. Angewandte Chemie, 1996, 108, 196-198.	2.0	9
38	S _N 1 reactions in supercritical carbon dioxide in the presence of alcohols: the role of preferential solvation. Organic and Biomolecular Chemistry, 2016, 14, 6554-6560.	2.8	8
39	A Simple Protocol for the Generation of Methyl(trifluoromethyl)dioxirane. Synlett, 2007, 2007, 0047-0050.	1.8	7
40	On the Reactivity of C(sp ³)–H σâ€Bonds: Oxygenation with Methyl(trifluoromethyl)Âdioxirane. European Journal of Organic Chemistry, 2008, 2008, 455-466.	2.4	7
41	Iodideâ€Photocatalyzed Reduction of Carbon Dioxide to Formic Acid with Thiols and Hydrogen Sulfide. ChemSusChem, 2016, 9, 3397-3400.	6.8	7
42	Photolysis of Tertiary Amines in the Presence of CO $<$ sub $>$ 2 $<$ /sub $>$: The Paths to Formic Acid, \hat{l} ±-Amino Acids, and 1,2-Diamines. Journal of Organic Chemistry, 2018, 83, 96-103.	3.2	7
43	Reactivity of Lithium \hat{I}^2 -Ketocarboxylates: The Role of Lithium Salts. Journal of the American Chemical Society, 2017, 139, 17414-17420.	13.7	6
44	First evidence of a single electron transfer process from a two-heteroatom-centred anion. Easy generation of amidyl radicals. Journal of the Chemical Society Chemical Communications, 1987, , 263.	2.0	2
45	Conformational Mobility of Thianthrene-5-oxide. Journal of Organic Chemistry, 2005, 70, 3450-3457.	3.2	2
46	Inverse solvent effects in the heterogeneous and homogeneous epoxidation of cis-2-heptene with [2-percarboxyethyl]-functionalized silica and meta-chloroperbenzoic acid. Organic and Biomolecular Chemistry, 2014, 12, 3246-3250.	2.8	2