
Utz Herbig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/917694/publications.pdf Version: 2024-02-01

LITZ HEDRIC

#	Article	IF	CITATIONS
1	Telomere Shortening Triggers Senescence of Human Cells through a Pathway Involving ATM, p53, and p21CIP1, but Not p16INK4a. Molecular Cell, 2004, 14, 501-513.	9.7	1,128
2	Cellular Senescence in Aging Primates. Science, 2006, 311, 1257-1257.	12.6	910
3	Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nature Cell Biology, 2012, 14, 355-365.	10.3	646
4	Accumulation of senescent cells in mitotic tissue of aging primates. Mechanisms of Ageing and Development, 2007, 128, 36-44.	4.6	511
5	Genome-wide association identifies <i>OBFC1</i> as a locus involved in human leukocyte telomere biology. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9293-9298.	7.1	244
6	Oncogene-induced telomere dysfunction enforces cellular senescence in human cancer precursor lesions. EMBO Journal, 2012, 31, 2839-2851.	7.8	200
7	Regulation of growth arrest in senescence: Telomere damage is not the end of the story. Mechanisms of Ageing and Development, 2006, 127, 16-24.	4.6	152
8	AP-1 imprints a reversible transcriptional programme of senescent cells. Nature Cell Biology, 2020, 22, 842-855.	10.3	114
9	Derepression of <i>hTERT</i> gene expression promotes escape from oncogene-induced cellular senescence. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5024-33.	7.1	109
10	Irreparable telomeric DNA damage and persistent DDR signalling as a shared causative mechanism of cellular senescence and ageing. Current Opinion in Genetics and Development, 2014, 26, 89-95.	3.3	106
11	Shorter telomere length in Europeans than in Africans due to polygenetic adaptation. Human Molecular Genetics, 2016, 25, 2324-2330.	2.9	86
12	Senescenceâ€associated βâ€galactosidase reveals the abundance of senescent CD8+ T cells in aging humans. Aging Cell, 2021, 20, e13344.	6.7	78
13	<i>DCAF4</i> , a novel gene associated with leucocyte telomere length. Journal of Medical Genetics, 2015, 52, 157-162.	3.2	66
14	Telomere dysfunction promotes transdifferentiation of human fibroblasts into myofibroblasts. Aging Cell, 2018, 17, e12838.	6.7	50
15	The replicometer is broken: telomeres activate cellular senescence in response to genotoxic stresses. Aging Cell, 2014, 13, 780-786.	6.7	47
16	Understanding the evolving phenotype of vascular complications in telomere biology disorders. Angiogenesis, 2019, 22, 95-102.	7.2	45
17	Real-time imaging of transcriptional activation in live cells reveals rapid up-regulation of the cyclin-dependent kinase inhibitor gene CDKN1A in replicative cellular senescence. Aging Cell, 2008, 2, 295-304.	6.7	42
18	Induction of Telomere Dysfunction Prolongs Disease Control of Therapy-Resistant Melanoma. Clinical Cancer Research, 2018, 24, 4771-4784.	7.0	29

Utz Herbig

#	Article	IF	CITATIONS
19	Stn1 is critical for telomere maintenance and longâ€ŧerm viability of somatic human cells. Aging Cell, 2015, 14, 372-381.	6.7	25
20	New intranasal and injectable gene therapy for healthy life extension. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121499119.	7.1	18
21	Telomeres Increasingly Develop Aberrant Structures in Aging Humans. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 230-235.	3.6	10
22	A Modified Nucleoside 6-Thio-2′-Deoxyguanosine Exhibits Antitumor Activity in Gliomas. Clinical Cancer Research, 2021, 27, 6800-6814.	7.0	10
23	Telomeres and replicative cellular aging of the human placenta and chorioamniotic membranes. Scientific Reports, 2021, 11, 5115.	3.3	8
24	Detection of Dysfunctional Telomeres in Oncogene-Induced Senescence. Methods in Molecular Biology, 2017, 1534, 69-78.	0.9	4
25	Cell Senescence. , 2019, , 1-15.		0
26	Cell Senescence. , 2021, , 849-864.		0