Guang He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9176437/publications.pdf

Version: 2024-02-01

236925 223800 4,233 47 25 46 citations h-index g-index papers 51 51 51 5736 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A lithiophilic/lithiophobic ternary alloy anode with Ag concentration gradients guides uniform Li deposition. Chemical Communications, 2022, 58, 3158-3161.	4.1	7
2	Non-aqueous synthesis of high-quality Prussian blue analogues for Na-ion batteries. Chemical Communications, 2022, 58, 4472-4475.	4.1	16
3	A room temperature alloying strategy to enable commercial metal foil for efficient Li/Na storage and deposition. Energy Storage Materials, 2021, 34, 708-715.	18.0	15
4	Dual-ion intercalation to enable high-capacity VOPO4 cathodes for Na-ion batteries. Electrochimica Acta, 2021, 365, 137376.	5.2	14
5	Applications of Lowâ€Meltingâ€Point Metals in Rechargeable Metal Batteries. Chemistry - A European Journal, 2021, 27, 6407-6421.	3.3	15
6	In Situ Electrolyte Gelation to Prevent Chemical Crossover in Li Metal Batteries. Advanced Materials Interfaces, 2021, 8, 2002152.	3.7	2
7	Frontispiece: Applications of Lowâ€Meltingâ€Point Metals in Rechargeable Metal Batteries. Chemistry - A European Journal, 2021, 27, .	3.3	O
8	Robust silver nanowire membrane with high porosity to construct stable Li metal anodes. Materials Today Energy, 2021, 21, 100751.	4.7	9
9	Capacity‣imited Na–M foil Anode: toward Practical Applications of Na Metal Anode. Small, 2021, 17, e2102126.	10.0	16
10	Structural Evolution upon Delithiation/Lithiation in Prelithiated Foil Anodes: A Case Study of AgLi Alloys with High Li Utilization and Marginal Volume Variation. Advanced Energy Materials, 2021, 11, 2003082.	19.5	42
11	Exploration of Nanoporous CuBi Binary Alloy for Potassium Storage. Advanced Functional Materials, 2020, 30, 2003838.	14.9	26
12	Dealloyed Nanoporous Materials for Rechargeable Postâ€Lithium Batteries. ChemSusChem, 2020, 13, 3376-3390.	6.8	20
13	A thermodynamically stable quasi-liquid interface for dendrite-free sodium metal anodes. Journal of Materials Chemistry A, 2020, 8, 6822-6827.	10.3	20
14	Dealloyed Nanoporous Materials for Rechargeable Postâ€Lithium Batteries. ChemSusChem, 2020, 13, 3287-3287.	6.8	14
15	An amalgam route to stabilize potassium metal anodes over a wide temperature range. Chemical Communications, 2020, 56, 3512-3515.	4.1	43
16	Dealloyed nanoporous materials for rechargeable lithium batteries. Electrochemical Energy Reviews, 2020, 3, 541-580.	25.5	49
17	Amalgams Anodes for Alkali Metal Batteries. ECS Meeting Abstracts, 2020, MA2020-01, 321-321.	0.0	0
18	Amalgam Protection for Alkali Metal Anodes. ECS Meeting Abstracts, 2020, MA2020-01, 91-91.	0.0	0

#	Article	IF	CITATIONS
19	A New Reaction Pathway Enables High Volumetric-Energy-Density Li-Se Batteries. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	4.9	1
20	Chemical-dealloying to fabricate nonconductive interlayers for high-loading lithium sulfur batteries. Journal of Alloys and Compounds, 2019, 806, 881-888.	5.5	16
21	Flexible Amalgam Film Enables Stable Lithium Metal Anodes with High Capacities. Angewandte Chemie, 2019, 131, 18637-18641.	2.0	7
22	Flexible Amalgam Film Enables Stable Lithium Metal Anodes with High Capacities. Angewandte Chemie - International Edition, 2019, 58, 18466-18470.	13.8	67
23	Tailoring nanoporous structures of Ge anodes for stable potassium-ion batteries. Electrochemistry Communications, 2019, 101, 68-72.	4.7	67
24	Ultrathin Al foils to fabricate dendrite-free Li–Al anodes. Journal of Materials Chemistry A, 2019, 7, 25415-25422.	10.3	27
25	Ambient stable Na0.76Mn0.48Ti0.44O2 as anode for Na-ion battery. Electrochimica Acta, 2019, 295, 181-186.	5.2	14
26	Delithiation/lithiation behaviors of three polymorphs of LiVOPO ₄ . Chemical Communications, 2018, 54, 13224-13227.	4.1	14
27	Stable cycling of Î ² -VOPO4/NaVOPO4 cathodes for sodium-ion batteries. Electrochimica Acta, 2018, 292, 47-54.	5.2	26
28	Rechargeable Al–CO ₂ Batteries for Reversible Utilization of CO ₂ . Advanced Materials, 2018, 30, e1801152.	21.0	96
29	Crystallite Size Control of Prussian White Analogues for Nonaqueous Potassium-lon Batteries. ACS Energy Letters, 2017, 2, 1122-1127.	17.4	294
30	\hat{l}^2 -NaVOPO (sub) 4 (sub) Obtained by a Low-Temperature Synthesis Process: A New 3.3 V Cathode for Sodium-Ion Batteries. Chemistry of Materials, 2016, 28, 1503-1512.	6.7	60
31	A 3.4 V Layered VOPO ₄ Cathode for Na-Ion Batteries. Chemistry of Materials, 2016, 28, 682-688.	6.7	100
32	VO ₂ /rGO nanorods as a potential anode for sodium- and lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 14750-14758.	10.3	99
33	Crystal Chemistry of Electrochemically and Chemically Lithiated Layered α _{-LiVOPO₄. Chemistry of Materials, 2015, 27, 6699-6707.}	6.7	45
34	Hierarchical pore-in-pore and wire-in-wire catalysts for rechargeable Zn– and Li–air batteries with ultra-long cycle life and high cell efficiency. Energy and Environmental Science, 2015, 8, 3274-3282.	30.8	107
35	Gentle reduction of SBA-15 silica to its silicon replica with retention of morphology. RSC Advances, 2014, 4, 22048-22052.	3.6	4
36	Stable Cycling of a Scalable Graphene-Encapsulated Nanocomposite for Lithium–Sulfur Batteries. ACS Applied Materials & Distriction (2014), 6, 10917-10923.	8.0	80

#	Article	IF	Citations
37	Nanostructured Li ₂ MnSiO ₄ /C Cathodes with Hierarchical Macroâ€/Mesoporosity for Lithium″on Batteries. Advanced Functional Materials, 2014, 24, 5277-5283.	14.9	51
38	Bimodal Mesoporous Carbon Nanofibers with High Porosity: Freestanding and Embedded in Membranes for Lithium–Sulfur Batteries. Chemistry of Materials, 2014, 26, 3879-3886.	6.7	80
39	Sulfur Speciation in Li–S Batteries Determined by Operando X-ray Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2013, 4, 3227-3232.	4.6	462
40	Tailoring Porosity in Carbon Nanospheres for Lithium–Sulfur Battery Cathodes. ACS Nano, 2013, 7, 10920-10930.	14.6	439
41	Hydrothermal Synthesis and Electrochemical Properties of Li ₂ CoSiO ₄ /C Nanospheres. Chemistry of Materials, 2013, 25, 1024-1031.	6.7	44
42	Spherical Ordered Mesoporous Carbon Nanoparticles with High Porosity for Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2012, 51, 3591-3595.	13.8	1,021
43	Investigation of hydrogen absorption in Li7VN4 and Li7MnN4. Physical Chemistry Chemical Physics, 2011, 13, 8889.	2.8	6
44	High "C―rate Li-S cathodes: sulfur imbibed bimodal porous carbons. Energy and Environmental Science, 2011, 4, 2878.	30.8	446
45	Preparation and electrochemical properties of MgNi–MB (M=Co, Ti) composite alloys. Journal of Alloys and Compounds, 2008, 450, 375-379.	5. 5	22
46	Effect of synthesis method on the structure and electrochemical behaviour of Co–Si particles. International Journal of Hydrogen Energy, 2007, 32, 3416-3419.	7.1	29
47	Preparation and electrochemical hydrogen storage property of alloy CoSi. Electrochemistry Communications, 2006, 8, 1633-1638.	4.7	39