
Peter D Nagy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9175041/publications.pdf Version: 2024-02-01

DETED D NACY

#	Article	IF	CITATIONS
1	Key tethering function of Atg11 autophagy scaffold protein in formation of virus-induced membrane contact sites during tombusvirus replication. Virology, 2022, 572, 1-16.	1.1	5
2	Race against Time between the Virus and Host: Actin-Assisted Rapid Biogenesis of Replication Organelles is Used by TBSV to Limit the Recruitment of Cellular Restriction Factors. Journal of Virology, 2022, 96, .	1.5	3
3	The centromeric histone CenH3 is recruited into the tombusvirus replication organelles. PLoS Pathogens, 2022, 18, e1010653.	2.1	0
4	Dynamic interplay between the co-opted Fis1 mitochondrial fission protein and membrane contact site proteins in supporting tombusvirus replication. PLoS Pathogens, 2021, 17, e1009423.	2.1	14
5	Tombusviruses orchestrate the host endomembrane system to create elaborate membranous replication organelles. Current Opinion in Virology, 2021, 48, 30-41.	2.6	31
6	A novel viral strategy for host factor recruitment: The co-opted proteasomal Rpn11 protein interaction hub in cooperation with subverted actin filaments are targeted to deliver cytosolic host factors for viral replication. PLoS Pathogens, 2021, 17, e1009680.	2.1	7
7	Co-opting of nonATP-generating glycolytic enzymes for TBSV replication. Virology, 2021, 559, 15-29.	1.1	5
8	Tombusviruses Target a Major Crossroad in the Endocytic and Recycling Pathways via Co-opting Rab7 Small GTPase. Journal of Virology, 2021, 95, e0107621.	1.5	5
9	Targeting conserved co-opted host factors to block virus replication: Using allosteric inhibitors of the cytosolic Hsp70s to interfere with tomato bushy stunt virus replication. Virology, 2021, 563, 1-19.	1.1	1
10	The retromer is co-opted to deliver lipid enzymes for the biogenesis of lipid-enriched tombusviral replication organelles. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
11	Host protein chaperones, RNA helicases and the ubiquitin network highlight the arms race for resources between tombusviruses and their hosts. Advances in Virus Research, 2020, 107, 133-158.	0.9	13
12	Reconstitution of an RNA Virus Replicase in Artificial Giant Unilamellar Vesicles Supports Full Replication and Provides Protection for the Double-Stranded RNA Replication Intermediate. Journal of Virology, 2020, 94, .	1.5	12
13	Taking over Cellular Energy-Metabolism for TBSV Replication: The High ATP Requirement of an RNA Virus within the Viral Replication Organelle. Viruses, 2020, 12, 56.	1.5	32
14	Co-opted Cellular Sac1 Lipid Phosphatase and PI(4)P Phosphoinositide Are Key Host Factors during the Biogenesis of the Tombusvirus Replication Compartment. Journal of Virology, 2020, 94, .	1.5	24
15	Role reversal of functional identity in host factors: Dissecting features affecting pro-viral versus antiviral functions of cellular DEAD-box helicases in tombusvirus replication. PLoS Pathogens, 2020, 16, e1008990.	2.1	4
16	Key interplay between the co-opted sorting nexin-BAR proteins and PI3P phosphoinositide in the formation of the tombusvirus replicase. PLoS Pathogens, 2020, 16, e1009120.	2.1	16
17	Screening <i>Legionella</i> effectors for antiviral effects reveals Rab1 GTPase as a proviral factor coopted for tombusvirus replication. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21739-21747.	3.3	23
18	Co-opting the fermentation pathway for tombusvirus replication: Compartmentalization of cellular metabolic pathways for rapid ATP generation. PLoS Pathogens, 2019, 15, e1008092.	2.1	20

#	Article	IF	CITATIONS
19	Blocking tombusvirus replication through the antiviral functions of DDX17-like RH30 DEAD-box helicase. PLoS Pathogens, 2019, 15, e1007771.	2.1	18
20	Interviral Recombination between Plant, Insect, and Fungal RNA Viruses: Role of the Intracellular Ca ²⁺ /Mn ²⁺ Pump. Journal of Virology, 2019, 94, .	1.5	4
21	Recruitment of Vps34 PI3K and enrichment of PI3P phosphoinositide in the viral replication compartment is crucial for replication of a positive-strand RNA virus. PLoS Pathogens, 2019, 15, e1007530.	2.1	41
22	Assembly-hub function of ER-localized SNARE proteins in biogenesis of tombusvirus replication compartment. PLoS Pathogens, 2018, 14, e1007028.	2.1	33
23	Tombusvirus RNA replication depends on the TOR pathway in yeast and plants. Virology, 2018, 519, 207-222.	1.1	22
24	Three dimensional imaging of the intracellular assembly of a functional viral RNA replicase complex. Journal of Cell Science, 2017, 130, 260-268.	1.2	68
25	Sterol Binding by the Tombusviral Replication Proteins Is Essential for Replication in Yeast and Plants. Journal of Virology, 2017, 91, .	1.5	32
26	Exploitation of a surrogate host, Saccharomyces cerevisiae, to identify cellular targets and develop novel antiviral approaches. Current Opinion in Virology, 2017, 26, 132-140.	2.6	23
27	The Glycolytic Pyruvate Kinase Is Recruited Directly into the Viral Replicase Complex to Generate ATP for RNA Synthesis. Cell Host and Microbe, 2017, 22, 639-652.e7.	5.1	43
28	The role of co-opted ESCRT proteins and lipid factors in protection of tombusviral double-stranded RNA replication intermediate against reconstituted RNAi in yeast. PLoS Pathogens, 2017, 13, e1006520.	2.1	37
29	Co-opting ATP-generating glycolytic enzyme PGK1 phosphoglycerate kinase facilitates the assembly of viral replicase complexes. PLoS Pathogens, 2017, 13, e1006689.	2.1	26
30	Cell-Free and Cell-Based Approaches to Explore the Roles of Host Membranes and Lipids in the Formation of Viral Replication Compartment Induced by Tombusviruses. Viruses, 2016, 8, 68.	1.5	26
31	Enrichment of Phosphatidylethanolamine in Viral Replication Compartments via Co-opting the Endosomal Rab5 Small GTPase by a Positive-Strand RNA Virus. PLoS Biology, 2016, 14, e2000128.	2.6	70
32	Building Viral Replication Organelles: Close Encounters of the Membrane Types. PLoS Pathogens, 2016, 12, e1005912.	2.1	104
33	Tombusvirus-Host Interactions: Co-Opted Evolutionarily Conserved Host Factors Take Center Court. Annual Review of Virology, 2016, 3, 491-515.	3.0	88
34	Screening a yeast library of temperature-sensitive mutants reveals a role for actin in tombusvirus RNA recombination. Virology, 2016, 489, 233-242.	1.1	16
35	Role of Viral RNA and Co-opted Cellular ESCRT-I and ESCRT-III Factors in Formation of Tombusvirus Spherules Harboring the Tombusvirus Replicase. Journal of Virology, 2016, 90, 3611-3626.	1.5	51
36	Exploration of Plant Virus Replication Inside a Surrogate Host, Saccharomyces cerevisiae, Elucidates Complex and Conserved Mechanisms. , 2016, , 35-65.		1

#	Article	IF	CITATIONS
37	Viral Replication Protein Inhibits Cellular Cofilin Actin Depolymerization Factor to Regulate the Actin Network and Promote Viral Replicase Assembly. PLoS Pathogens, 2016, 12, e1005440.	2.1	44
38	Activation of <i>Tomato Bushy Stunt Virus</i> RNA-Dependent RNA Polymerase by Cellular Heat Shock Protein 70 Is Enhanced by Phospholipids <i>In Vitro</i> . Journal of Virology, 2015, 89, 5714-5723.	1.5	44
39	The Proteasomal Rpn11 Metalloprotease Suppresses Tombusvirus RNA Recombination and Promotes Viral Replication via Facilitating Assembly of the Viral Replicase Complex. Journal of Virology, 2015, 89, 2750-2763.	1.5	18
40	Novel Mechanism of Regulation of Tomato Bushy Stunt Virus Replication by Cellular WW-Domain Proteins. Journal of Virology, 2015, 89, 2064-2079.	1.5	13
41	Salicylic Acid Inhibits the Replication of <i>Tomato bushy stunt virus</i> by Directly Targeting a Host Component in the Replication Complex. Molecular Plant-Microbe Interactions, 2015, 28, 379-386.	1.4	46
42	Viral Sensing of the Subcellular Environment Regulates the Assembly of New Viral Replicase Complexes during the Course of Infection. Journal of Virology, 2015, 89, 5196-5199.	1.5	17
43	Cellular Ubc2/Rad6 E2 ubiquitin-conjugating enzyme facilitates tombusvirus replication in yeast and plants. Virology, 2015, 484, 265-275.	1.1	19
44	Coordinated Function of Cellular DEAD-Box Helicases in Suppression of Viral RNA Recombination and Maintenance of Viral Genome Integrity. PLoS Pathogens, 2015, 11, e1004680.	2.1	26
45	RNA virus replication depends on enrichment of phosphatidylethanolamine at replication sites in subcellular membranes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1782-91.	3.3	111
46	Template Role of Double-Stranded RNA in Tombusvirus Replication. Journal of Virology, 2014, 88, 5638-5651.	1.5	52
47	The Expanding Functions of Cellular Helicases: The Tombusvirus RNA Replication Enhancer Co-opts the Plant eIF4AIII-Like AtRH2 and the DDX5-Like AtRH5 DEAD-Box RNA Helicases to Promote Viral Asymmetric RNA Replication. PLoS Pathogens, 2014, 10, e1004051.	2.1	44
48	Co-opted Oxysterol-Binding ORP and VAP Proteins Channel Sterols to RNA Virus Replication Sites via Membrane Contact Sites. PLoS Pathogens, 2014, 10, e1004388.	2.1	98
49	Inactivation of the Host Lipin Gene Accelerates RNA Virus Replication through Viral Exploitation of the Expanded Endoplasmic Reticulum Membrane. PLoS Pathogens, 2014, 10, e1003944.	2.1	50
50	Noncanonical Role for the Host Vps4 AAA+ ATPase ESCRT Protein in the Formation of Tomato Bushy Stunt Virus Replicase. PLoS Pathogens, 2014, 10, e1004087.	2.1	102
51	Tombusvirus-yeast interactions identify conserved cell-intrinsic viral restriction factors. Frontiers in Plant Science, 2014, 5, 383.	1.7	23
52	Methylation of translation elongation factor 1A by the METTL10-like See1 methyltransferase facilitates tombusvirus replication in yeast and plants. Virology, 2014, 448, 43-54.	1.1	31
53	Tombusviruses upregulate phospholipid biosynthesis via interaction between p33 replication protein and yeast lipid sensor proteins during virus replication in yeast. Virology, 2014, 471-473, 72-80.	1.1	30
54	Expanding use of multi-origin subcellular membranes by positive-strand RNA viruses during replication. Current Opinion in Virology, 2014, 9, 119-126.	2.6	52

#	Article	IF	CITATIONS
55	The Hop-Like Stress-Induced Protein 1 Cochaperone Is a Novel Cell-Intrinsic Restriction Factor for Mitochondrial Tombusvirus Replication. Journal of Virology, 2014, 88, 9361-9378.	1.5	29
56	How yeast can be used as a genetic platform to explore virus–host interactions: from â€~omics' to functional studies. Trends in Microbiology, 2014, 22, 309-316.	3.5	52
57	Tombusvirus replication depends on Sec39p endoplasmic reticulum-associated transport protein. Virology, 2013, 447, 21-31.	1.1	16
58	Identification of Novel Host Factors via Conserved Domain Search: Cns1 Cochaperone Is a Novel Restriction Factor of Tombusvirus Replication in Yeast. Journal of Virology, 2013, 87, 12600-12610.	1.5	11
59	Characterization of dominant-negative and temperature-sensitive mutants of tombusvirus replication proteins affecting replicase assembly. Virology, 2013, 437, 48-61.	1.1	9
60	Yeast screens for host factors in positive-strand RNA virus replication based on a library of temperature-sensitive mutants. Methods, 2013, 59, 207-216.	1.9	43
61	Cyclophilin A Binds to the Viral RNA and Replication Proteins, Resulting in Inhibition of Tombusviral Replicase Assembly. Journal of Virology, 2013, 87, 13330-13342.	1.5	35
62	The GEF1 Proton-Chloride Exchanger Affects Tombusvirus Replication via Regulation of Copper Metabolism in Yeast. Journal of Virology, 2013, 87, 1800-1810.	1.5	15
63	The TPR Domain in the Host Cyp40-like Cyclophilin Binds to the Viral Replication Protein and Inhibits the Assembly of the Tombusviral Replicase. PLoS Pathogens, 2012, 8, e1002491.	2.1	31
64	A Co-Opted DEAD-Box RNA Helicase Enhances Tombusvirus Plus-Strand Synthesis. PLoS Pathogens, 2012, 8, e1002537.	2.1	74
65	p33-Independent Activation of a Truncated p92 RNA-Dependent RNA Polymerase of Tomato Bushy Stunt Virus in Yeast Cell-Free Extract. Journal of Virology, 2012, 86, 12025-12038.	1.5	37
66	Defining the Roles of <i>cis</i> -Acting RNA Elements in Tombusvirus Replicase Assembly <i>In Vitro</i> . Journal of Virology, 2012, 86, 156-171.	1.5	44
67	Proteome-Wide Overexpression of Host Proteins for Identification of Factors Affecting Tombusvirus RNA Replication: an Inhibitory Role of Protein Kinase C. Journal of Virology, 2012, 86, 9384-9395.	1.5	42
68	Authentic <i>In Vitro</i> Replication of Two Tombusviruses in Isolated Mitochondrial and Endoplasmic Reticulum Membranes. Journal of Virology, 2012, 86, 12779-12794.	1.5	41
69	Viral replication—in search of the perfect host. Current Opinion in Virology, 2012, 2, 663-668.	2.6	7
70	Host factors with regulatory roles in tombusvirus replication. Current Opinion in Virology, 2012, 2, 691-698.	2.6	60
71	Similar roles for yeast Dbp2 and Arabidopsis RH20 DEAD-box RNA helicases to Ded1 helicase in tombusvirus plus-strand synthesis. Virology, 2012, 432, 470-484.	1.1	42
72	Identification of Small Molecule Inhibitors of Tomato Bushy Stunt Virus Replication. Methods in Molecular Biology, 2012, 894, 345-357.	0.4	2

#	Article	IF	CITATIONS
73	Expression of Dominant-Negative Mutants to Study Host Factors Affecting Plant Virus Infections. Methods in Molecular Biology, 2012, 894, 359-376.	0.4	1
74	The dependence of viral RNA replication on co-opted host factors. Nature Reviews Microbiology, 2012, 10, 137-149.	13.6	394
75	An inhibitory function of WW domain-containing host proteins in RNA virus replication. Virology, 2012, 426, 106-119.	1.1	24
76	Non-template functions of the viral RNA in plant RNA virus replication. Current Opinion in Virology, 2011, 1, 332-338.	2.6	28
77	RNA chaperone activity of the tombusviral p33 replication protein facilitates initiation of RNA synthesis by the viral RdRp in vitro. Virology, 2011, 409, 338-347.	1.1	68
78	Inhibition of phospholipid biosynthesis decreases the activity of the tombusvirus replicase and alters the subcellular localization of replication proteins. Virology, 2011, 415, 141-152.	1.1	59
79	The Roles of Host Factors in Tombusvirus RNA Recombination. Advances in Virus Research, 2011, 81, 63-84.	0.9	46
80	Diverse roles of host RNA binding proteins in RNA virus replication. RNA Biology, 2011, 8, 305-315.	1.5	139
81	Role of RNase MRP in Viral RNA Degradation and RNA Recombination. Journal of Virology, 2011, 85, 243-253.	1.5	34
82	Direct Inhibition of Tombusvirus Plus-Strand RNA Synthesis by a Dominant Negative Mutant of a Host Metabolic Enzyme, Glyceraldehyde-3-Phosphate Dehydrogenase, in Yeast and Plants. Journal of Virology, 2011, 85, 9090-9102.	1.5	62
83	Synergistic Roles of Eukaryotic Translation Elongation Factors 1BÎ ³ and 1A in Stimulation of Tombusvirus Minus-Strand Synthesis. PLoS Pathogens, 2011, 7, e1002438.	2.1	65
84	Dissecting Virus-Plant Interactions Through Proteomics Approaches. Current Proteomics, 2010, 7, 316-327.	0.1	16
85	Nucleolin/Nsr1p binds to the 3′ noncoding region of the tombusvirus RNA and inhibits replication. Virology, 2010, 396, 10-20.	1.1	30
86	Ubiquitination of tombusvirus p33 replication protein plays a role in virus replication and binding to the host Vps23p ESCRT protein. Virology, 2010, 397, 358-368.	1.1	78
87	Repair of lost 5′ terminal sequences in tombusviruses: Rapid recovery of promoter- and enhancer-like sequences in recombinant RNAs. Virology, 2010, 404, 96-105.	1.1	7
88	Cpr1 cyclophilin and Ess1 parvulin prolyl isomerases interact with the tombusvirus replication protein and inhibit viral replication in yeast model host. Virology, 2010, 406, 342-351.	1.1	60
89	Inhibition of Sterol Biosynthesis Reduces Tombusvirus Replication in Yeast and Plants. Journal of Virology, 2010, 84, 2270-2281.	1.5	80
90	Translation Elongation Factor 1A Facilitates the Assembly of the Tombusvirus Replicase and Stimulates Minus-Strand Synthesis. PLoS Pathogens, 2010, 6, e1001175.	2.1	104

#	Article	IF	CITATIONS
91	Making of Viral Replication Organelles by Remodeling Interior Membranes. Viruses, 2010, 2, 2436-2442.	1.5	25
92	The Combined Effect of Environmental and Host Factors on the Emergence of Viral RNA Recombinants. PLoS Pathogens, 2010, 6, e1001156.	2.1	29
93	A Host Ca2+/Mn2+ Ion Pump Is a Factor in the Emergence of Viral RNA Recombinants. Cell Host and Microbe, 2010, 7, 74-81.	5.1	41
94	Global Genomics and Proteomics Approaches to Identify Host Factors as Targets to Induce Resistance Against Tomato Bushy Stunt Virus. Advances in Virus Research, 2010, 76, 123-177.	0.9	87
95	A Highâ€Throughput Approach for Studying Virus Replication in Yeast. Current Protocols in Microbiology, 2010, 19, Unit16J.1.	6.5	23
96	Inhibition of RNA Recruitment and Replication of an RNA Virus by Acridine Derivatives with Known Anti-Prion Activities. PLoS ONE, 2009, 4, e7376.	1.1	14
97	A Key Role for Heat Shock Protein 70 in the Localization and Insertion of Tombusvirus Replication Proteins to Intracellular Membranes. Journal of Virology, 2009, 83, 3276-3287.	1.5	127
98	The Nedd4-Type Rsp5p Ubiquitin Ligase Inhibits Tombusvirus Replication by Regulating Degradation of the p92 Replication Protein and Decreasing the Activity of the Tombusvirus Replicase. Journal of Virology, 2009, 83, 11751-11764.	1.5	67
99	A Discontinuous RNA Platform Mediates RNA Virus Replication: Building an Integrated Model for RNA–based Regulation of Viral Processes. PLoS Pathogens, 2009, 5, e1000323.	2.1	57
100	A Unique Role for the Host ESCRT Proteins in Replication of Tomato bushy stunt virus. PLoS Pathogens, 2009, 5, e1000705.	2.1	168
101	Translation elongation factor 1A is a component of the tombusvirus replicase complex and affects the stability of the p33 replication co-factor. Virology, 2009, 385, 245-260.	1.1	121
102	Silencing of Nicotiana benthamiana Xrn4p exoribonuclease promotes tombusvirus RNA accumulation and recombination. Virology, 2009, 386, 344-352.	1.1	65
103	A temperature sensitive mutant of heat shock protein 70 reveals an essential role during the early steps of tombusvirus replication. Virology, 2009, 394, 28-38.	1.1	63
104	Host Factors Promoting Viral RNA Replication. , 2009, , 267-295.		3
105	Defective Interfering RNAs: Foes of Viruses and Friends of Virologists. Viruses, 2009, 1, 895-919.	1.5	96
106	The host Pex19p plays a role in peroxisomal localization of tombusvirus replication proteins. Virology, 2008, 379, 294-305.	1.1	90
107	Recombination in Plant RNA Viruses. , 2008, , 133-156.		57
108	Yeast as a Model Host to Explore Plant Virus-Host Interactions. Annual Review of Phytopathology, 2008, 46, 217-242.	3.5	152

#	Article	IF	CITATIONS
109	Tomato bushy stunt virus Co-Opts the RNA-Binding Function of a Host Metabolic Enzyme for Viral Genomic RNA Synthesis. Cell Host and Microbe, 2008, 3, 178-187.	5.1	149
110	Cdc34p Ubiquitin-Conjugating Enzyme Is a Component of the Tombusvirus Replicase Complex and Ubiquitinates p33 Replication Protein. Journal of Virology, 2008, 82, 6911-6926.	1.5	123
111	Authentic Replication and Recombination of <i>Tomato Bushy Stunt Virus</i> RNA in a Cell-Free Extract from Yeast. Journal of Virology, 2008, 82, 5967-5980.	1.5	88
112	In vitro assembly of the <i>Tomato bushy stunt virus</i> replicase requires the host Heat shock protein 70. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19956-19961.	3.3	157
113	Surface Plasmon Resonance Analysis of Interactions Between Replicase Proteins of Tomato Bushy Stunt Virus. Methods in Molecular Biology, 2008, 451, 267-277.	0.4	5
114	Multiple Roles of Viral Replication Proteins in Plant RNA Virus Replication. Methods in Molecular Biology, 2008, 451, 55-68.	0.4	50
115	Genome-Wide Screens for Identification of Host Factors in Viral Replication. Methods in Molecular Biology, 2008, 451, 615-624.	0.4	16
116	Exploiting alternative subcellular location for replication: Tombusvirus replication switches to the endoplasmic reticulum in the absence of peroxisomes. Virology, 2007, 362, 320-330.	1.1	104
117	Expression of the Arabidopsis Xrn4p 5′–3′ exoribonuclease facilitates degradation of tombusvirus RNA and promotes rapid emergence of viral variants in plants. Virology, 2007, 368, 238-248.	1.1	55
118	Host transcription factor Rpb11p affects tombusvirus replication and recombination via regulating the accumulation of viral replication proteins. Virology, 2007, 368, 388-404.	1.1	37
119	Yeast as a model host to dissect functions of viral and host factors in tombusvirus replication. Virology, 2006, 344, 211-220.	1.1	102
120	Kinetics and functional studies on interaction between the replicase proteins of Tomato Bushy Stunt Virus: Requirement of p33:p92 interaction for replicase assembly. Virology, 2006, 345, 270-279.	1.1	50
121	Use of double-stranded RNA templates by the tombusvirus replicase in vitro: Implications for the mechanism of plus-strand initiation. Virology, 2006, 352, 110-120.	1.1	18
122	Proteomics Analysis of the Tombusvirus Replicase: Hsp70 Molecular Chaperone Is Associated with the Replicase and Enhances Viral RNA Replication. Journal of Virology, 2006, 80, 2162-2169.	1.5	172
123	Suppression of Viral RNA Recombination by a Host Exoribonuclease. Journal of Virology, 2006, 80, 2631-2640.	1.5	67
124	Identification of Essential Host Factors Affecting Tombusvirus RNA Replication Based on the Yeast Tet Promoters Hughes Collection. Journal of Virology, 2006, 80, 7394-7404.	1.5	113
125	Screening of the Yeast yTHC Collection Identifies Essential Host Factors Affecting Tombusvirus RNA Recombination. Journal of Virology, 2006, 80, 1231-1241.	1.5	92
126	The role of the p33:p33/p92 interaction domain in RNA replication and intracellular localization of p33 and p92 proteins of Cucumber necrosis tombusvirus. Virology, 2005, 338, 81-95.	1.1	166

#	Article	IF	CITATIONS
127	Heterologous RNA replication enhancer stimulates in vitro RNA synthesis and template-switching by the carmovirus, but not by the tombusvirus, RNA-dependent RNA polymerase: Implication for modular evolution of RNA viruses. Virology, 2005, 341, 107-121.	1.1	35
128	Inhibition of in vitro RNA binding and replicase activity by phosphorylation of the p33 replication protein of Cucumber necrosis tombusvirus. Virology, 2005, 343, 79-92.	1.1	44
129	Phosphorylation of the p33 replication protein of Cucumber necrosis tombusvirus adjacent to the RNA binding site affects viral RNA replication. Virology, 2005, 343, 65-78.	1.1	39
130	Specific Binding of Tombusvirus Replication Protein p33 to an Internal Replication Element in the Viral RNA Is Essential for Replication. Journal of Virology, 2005, 79, 4859-4869.	1.5	174
131	Role of an Internal and Two 3′-Terminal RNA Elements in Assembly of Tombusvirus Replicase. Journal of Virology, 2005, 79, 10608-10618.	1.5	109
132	Genome-wide screen identifies host genes affecting viral RNA recombination. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10545-10550.	3.3	119
133	The p92 Polymerase Coding Region Contains an Internal RNA Element Required at an Early Step in Tombusvirus Genome Replication. Journal of Virology, 2005, 79, 4848-4858.	1.5	91
134	Mechanism of Stimulation of Plus-Strand Synthesis by an RNA Replication Enhancer in a Tombusvirus. Journal of Virology, 2005, 79, 9777-9785.	1.5	27
135	Yeast genome-wide screen reveals dissimilar sets of host genes affecting replication of RNA viruses. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7326-7331.	3.3	203
136	Purification of the Cucumber Necrosis Virus Replicase from Yeast Cells: Role of Coexpressed Viral RNA in Stimulation of Replicase Activity. Journal of Virology, 2004, 78, 8254-8263.	1.5	124
137	The AU-Rich RNA Recombination Hot Spot Sequence of Brome Mosaic Virus Is Functional in Tombusviruses: Implications for the Mechanism of RNA Recombination. Journal of Virology, 2004, 78, 2288-2300.	1.5	71
138	Interaction between the replicase proteins of Tomato Bushy Stunt virus in vitro and in vivo. Virology, 2004, 326, 250-261.	1.1	49
139	Advances in the Molecular Biology of Tombusviruses: Gene Expression, Genome Replication, and Recombination. Progress in Molecular Biology and Translational Science, 2004, 78, 187-226.	1.9	198
140	A replication silencer element in a plus-strand RNA virus. EMBO Journal, 2003, 22, 5602-5611.	3.5	125
141	Mutations in the RNA-binding domains of tombusvirus replicase proteins affect RNA recombination in vivo. Virology, 2003, 317, 359-372.	1.1	45
142	The overlapping RNA-binding domains of p33 and p92 replicase proteins are essential for tombusvirus replication. Virology, 2003, 308, 191-205.	1.1	77
143	Yeast as a model host to study replication and recombination of defective interfering RNA of Tomato bushy stunt virus. Virology, 2003, 314, 315-325.	1.1	165
144	Characterization of the RNA-Binding Domains in the Replicase Proteins of Tomato Bushy Stunt Virus. Journal of Virology, 2003, 77, 9244-9258.	1.5	115

#	Article	IF	CITATIONS
145	Mechanism of RNA Recombination in Carmo- and Tombusviruses: Evidence for Template Switching by the RNA-Dependent RNA Polymerase In Vitro. Journal of Virology, 2003, 77, 12033-12047.	1.5	96
146	In Vivo and in Vitro Characterization of an RNA Replication Enhancer in a Satellite RNA Associated with Turnip crinkle virus. Virology, 2001, 288, 315-324.	1.1	32
147	CCA initiation boxes without unique promoter elements support in vitro transcription by three viral RNA-dependent RNA polymerases. Rna, 2000, 6, 698-707.	1.6	35
148	Mapping Sequences Active in Homologous RNA Recombination in Brome Mosaic Virus: Prediction of Recombination Hot Spots. Virology, 1999, 254, 92-104.	1.1	34
149	Silencing Homologous RNA Recombination Hot Spots with GC-Rich Sequences in Brome Mosaic Virus. Journal of Virology, 1998, 72, 1122-1130.	1.5	37
150	New Insights into the Mechanisms of RNA Recombination. Virology, 1997, 235, 1-9.	1.1	357
151	Molecular Studies of Genetic RNA–RNA Recombination in Brome Mosaic Virus. Advances in Virus Research, 1994, 43, 275-302.	0.9	55