
David Z I Cherney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9174998/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Potential Use of SGLT-2 Inhibitors in Obstructive Sleep Apnea: A new treatment on the horizon. Sleep and Breathing, 2023, 27, 77-89.	1.7	9
2	Effect of sodium–glucose cotransporter 2 inhibitors on hemoglobin and hematocrit levels in type 2 diabetes: a systematic review and meta-analysis. International Urology and Nephrology, 2022, 54, 827-841.	1.4	20
3	Cardiometabolic and Kidney Protection in Kidney Transplant Recipients With Diabetes: Mechanisms, Clinical Applications, and Summary of Clinical Trials. Transplantation, 2022, 106, 734-748.	1.0	6
4	A pre-specified analysis of the Dapagliflozin and Prevention of Adverse Outcomes in Chronic Kidney Disease (DAPA-CKD) randomized controlled trial on the incidence of abrupt declines in kidney function. Kidney International, 2022, 101, 174-184.	5.2	53
5	Cardiorenal protection with SGLT2 inhibitors in patients with diabetes mellitus: from biomarkers to clinical outcomes in heart failure and diabetic kidney disease. Metabolism: Clinical and Experimental, 2022, 126, 154918.	3.4	42
6	The association between physical activity time and neuropathy in longstanding type 1 diabetes: A cross-sectional analysis of the Canadian study of longevity in type 1 diabetes. Journal of Diabetes and Its Complications, 2022, 36, 108134.	2.3	5
7	Premature Death in Kidney Transplant Recipients: The Time for Trials is Now. Journal of the American Society of Nephrology: JASN, 2022, 33, 665-673.	6.1	4
8	The differential effects of ertugliflozin on glucosuria and natriuresis biomarkers: Prespecified analyses from <scp>VERTIS CV</scp> . Diabetes, Obesity and Metabolism, 2022, 24, 1114-1122.	4.4	5
9	Cardiorenal outcomes with ertugliflozin assessed according to baseline glucose″owering agent: An analysis from <scp>VERTIS CV</scp> . Diabetes, Obesity and Metabolism, 2022, , .	4.4	5
10	Ertugliflozin, renoprotection and potential confounding by muscle wasting. Reply to Groothof D, Post A, Gans ROB et al [letter]. Diabetologia, 2022, 65, 908-911.	6.3	0
11	Effect of dapagliflozin on kidney and cardiovascular outcomes by baseline KDIGO risk categories: a post hoc analysis of the DAPA-CKD trial. Diabetologia, 2022, 65, 1085-1097.	6.3	28
12	Sodium-Glucose Cotransporter 2 Inhibitors and Risk of Hyperkalemia in People With Type 2 Diabetes: A Meta-Analysis of Individual Participant Data From Randomized, Controlled Trials. Circulation, 2022, 145, 1460-1470.	1.6	97
13	A Unique Multi- and Interdisciplinary Cardiology-Renal-Endocrine Clinic: A Description and Assessment of Outcomes. Canadian Journal of Kidney Health and Disease, 2022, 9, 205435812210812.	1.1	7
14	Effects of dapagliflozin on volume status and systemic haemodynamics in patients with chronic kidney disease without diabetes: Results from <scp>DAPASALT</scp> and <scp>DIAMOND</scp> . Diabetes, Obesity and Metabolism, 2022, 24, 1578-1587.	4.4	11
15	FC083: Finerenone and Canagliflozin in the Treatment of Chronic Kidney Disease and Type 2 Diabetes: Matching-Adjusted Indirect Treatment Comparison of Fidelio-DKD and Credence. Nephrology Dialysis Transplantation, 2022, 37, .	0.7	1
16	Prescribing SGLT2 Inhibitors in Patients With CKD: Expanding Indications and Practical Considerations. Kidney International Reports, 2022, 7, 1463-1476.	0.8	59
17	Heart and Kidney Outcomes With Ertugliflozin in People with Non-albuminuric Diabetic Kidney Disease: A post hoc Analysis from the Randomized VERTIS CV Trial. Kidney International Reports, 2022, 7, 1782-1792.	0.8	4
18	Mediators of ertugliflozin effects on heart failure and kidney outcomes among patients with type 2 diabetes mellitus. Diabetes, Obesity and Metabolism, 2022, 24, 1829-1839.	4.4	23

#	Article	IF	CITATIONS
19	SGLT2 Inhibition in Type 1 Diabetes with Diabetic Kidney Disease: Potential Cardiorenal Benefits Can Outweigh Preventable Risk of Diabetic Ketoacidosis. Current Diabetes Reports, 2022, 22, 317-332.	4.2	4
20	Sex and Gender Related Differences in Diabetic Kidney Disease. Seminars in Nephrology, 2022, 42, 170-184.	1.6	7
21	Initial eGFR Changes with Ertugliflozin and Associations with Clinical Parameters: Analyses from the VERTIS CV Trial. American Journal of Nephrology, 2022, 53, 516-525.	3.1	7
22	Sodium–glucose cotransporter 2 inhibitors as adjunct therapy for type 1 diabetes and the benefit on cardiovascular and renal disease evaluated by Steno risk engines. Journal of Diabetes and Its Complications, 2022, 36, 108257.	2.3	5
23	Association of SGLT2 Inhibitors With Cardiovascular and Kidney Outcomes in Patients With Type 2 Diabetes. JAMA Cardiology, 2021, 6, 148.	6.1	625
24	Sotagliflozin in Patients with Diabetes and Chronic Kidney Disease. New England Journal of Medicine, 2021, 384, 129-139.	27.0	662
25	Gradient of Risk and Associations With Cardiovascular Efficacy of Ertugliflozin by Measures of Kidney Function. Circulation, 2021, 143, 602-605.	1.6	24
26	Renal haemodynamic and protective effects of renoactive drugs in type 2 diabetes: Interaction with SGLT2 inhibitors. Nephrology, 2021, 26, 377-390.	1.6	10
27	Characterization and implications of the initial estimated glomerular filtration rate â€~dip' upon sodium-glucose cotransporter-2 inhibition with empagliflozin in the EMPA-REG OUTCOME trial. Kidney International, 2021, 99, 750-762.	5.2	111
28	Changes in Cardiovascular Biomarkers Associated With the Sodium–Glucose Cotransporter 2 (SGLT2) Inhibitor Ertugliflozin in Patients With Chronic Kidney Disease and Type 2 Diabetes. Diabetes Care, 2021, 44, e45-e47.	8.6	22
29	DAPA-CKD. JACC Basic To Translational Science, 2021, 6, 74-77.	4.1	8
30	Evaluation of the Pharmacokinetics and Exposure–Response Relationship of Dapagliflozin in Patients without Diabetes and with Chronic Kidney Disease. Clinical Pharmacokinetics, 2021, 60, 517-525.	3.5	6
31	Vasopressin associated with renal vascular resistance in adults with longstanding type 1 diabetes with and without diabetic kidney disease. Journal of Diabetes and Its Complications, 2021, 35, 107807.	2.3	8
32	Effects of ertugliflozin on kidney composite outcomes, renal function and albuminuria in patients with type 2 diabetes mellitus: an analysis from the randomised VERTIS CV trial. Diabetologia, 2021, 64, 1256-1267.	6.3	103
33	Discoveries from the study of longstanding type 1 diabetes. Diabetologia, 2021, 64, 1189-1200.	6.3	12
34	Cardiorenal Protection in Diabetic Kidney Disease. Endocrinology and Metabolism, 2021, 36, 256-269.	3.0	10
35	Clinical Implications of an Acute Dip in eGFR after SGLT2 Inhibitor Initiation. Clinical Journal of the American Society of Nephrology: CJASN, 2021, 16, 1278-1280.	4.5	65
36	Renal haemodynamic response to sodiumâ€glucose cotransporterâ€2 inhibition does not depend on protein intake: An analysis of three randomized controlled trials. Diabetes, Obesity and Metabolism, 2021, 23, 1961-1967.	4.4	5

#	Article	IF	CITATIONS
37	Sodium-glucose cotransporter 2 inhibition in non-diabetic kidney disease. Current Opinion in Nephrology and Hypertension, 2021, 30, 474-481.	2.0	6
38	Relationships between inflammation, hemodynamic function and RAAS in longstanding type 1 diabetes and diabetic kidney disease. Journal of Diabetes and Its Complications, 2021, 35, 107880.	2.3	8
39	Transforming the Care of Patients with Diabetic Kidney Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2021, 16, 1590-1600.	4.5	11
40	Kidney outcomes using a sustained ≥40% decline in <scp>eGFR</scp> : A metaâ€analysis of <scp>SGLT2</scp> inhibitor trials. Clinical Cardiology, 2021, 44, 1139-1143.	1.8	20
41	Ertugliflozin and Slope of Chronic eGFR. Clinical Journal of the American Society of Nephrology: CJASN, 2021, 16, 1345-1354.	4.5	26
42	Changes in plasma and urine metabolites associated with empagliflozin in patients with type 1 diabetes. Diabetes, Obesity and Metabolism, 2021, 23, 2466-2475.	4.4	17
43	Finerenone—A New Frontier in Renin-Angiotensin-Aldosterone System Inhibition in Diabetic Kidney Disease. American Journal of Kidney Diseases, 2021, 78, 309-311.	1.9	11
44	Efficacy and safety of sotagliflozin in patients with type <scp>2</scp> diabetes and severe renal impairment. Diabetes, Obesity and Metabolism, 2021, 23, 2632-2642.	4.4	30
45	Markers of Kidney Injury, Inflammation, and Fibrosis Associated With Ertugliflozin in Patients With CKD and Diabetes. Kidney International Reports, 2021, 6, 2095-2104.	0.8	23
46	Kidney Effects of Empagliflozin in People with Type 1 Diabetes. Clinical Journal of the American Society of Nephrology: CJASN, 2021, 16, 1715-1719.	4.5	13
47	Tubular injury in diabetic ketoacidosis: Results from the diabetic kidney alarm study. Pediatric Diabetes, 2021, 22, 1031-1039.	2.9	6
48	Allopurinol and Renal Outcomes in Adults With and Without Type 2 Diabetes: A Retrospective, Population-Based Cohort Study and Propensity Score Analysis. Canadian Journal of Diabetes, 2021, 45, 641-649.e4.	0.8	3
49	Glycemic efficacy and safety of the SGLT2 inhibitor ertugliflozin in patients with type 2 diabetes and stage 3 chronic kidney disease: an analysis from the VERTIS CV randomized trial. BMJ Open Diabetes Research and Care, 2021, 9, e002484.	2.8	14
50	Cardiorenal mechanisms of action of glucagon-like-peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors. Med, 2021, 2, 1203-1230.	4.4	17
51	SGLT2 Inhibition in Patients With Type 2 Diabetes Mellitus Post-Nephrectomy: A Single-Center Case Series. Canadian Journal of Kidney Health and Disease, 2021, 8, 205435812110655.	1.1	1
52	Neurohormones, inflammatory mediators, and cardiovascular injury in the setting of heart failure. Heart Failure Reviews, 2020, 25, 685-701.	3.9	12
53	The New Biology of Diabetic Kidney Disease—Mechanisms and Therapeutic Implications. Endocrine Reviews, 2020, 41, 202-231.	20.1	77
54	Preventing CKD in Developed Countries. Kidney International Reports, 2020, 5, 263-277.	0.8	72

#	Article	IF	CITATIONS
55	Tubuloglomerular Feedback in Renal Glucosuria: Mimicking Long-term SGLT-2 Inhibitor Therapy. Kidney Medicine, 2020, 2, 76-79.	2.0	7
56	Impact of Cardio-Renal-Metabolic Comorbidities on Cardiovascular Outcomes and Mortality in Type 2 Diabetes Mellitus. American Journal of Nephrology, 2020, 51, 74-82.	3.1	31
57	The Effect of Urine pH and Urinary Uric Acid Levels on the Development of Contrast Nephropathy. Kidney and Blood Pressure Research, 2020, 45, 131-141.	2.0	13
58	Efficacy of Ertugliflozin on Heart Failure–Related Events in Patients With Type 2 Diabetes Mellitus and Established Atherosclerotic Cardiovascular Disease. Circulation, 2020, 142, 2205-2215.	1.6	156
59	Cross-sectional associations between central and general adiposity with albuminuria: observations from 400,000 people in UK Biobank. International Journal of Obesity, 2020, 44, 2256-2266.	3.4	9
60	Relative Hypoxia and Early Diabetic Kidney Disease in Type 1 Diabetes. Diabetes, 2020, 69, 2700-2708.	0.6	34
61	We Can Finally Stop Worrying About SGLT2 Inhibitors and Acute Kidney Injury. American Journal of Kidney Diseases, 2020, 76, 454-456.	1.9	30
62	The dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial: baseline characteristics. Nephrology Dialysis Transplantation, 2020, 35, 1700-1711.	0.7	107
63	Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. New England Journal of Medicine, 2020, 383, 1425-1435.	27.0	927
64	MO051EFFECTS OF SEMAGLUTIDE ON CHRONIC KIDNEY DISEASE OUTCOMES: A POST HOC POOLED ANALYSIS FROM THE SUSTAIN 6 AND PIONEER 6 TRIALS. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	2
65	LB005KIDNEY IMPLICATIONS OF THE INITIAL EGFR RESPONSE TO SGLT2 INHIBITION WITH EMPAGLIFLOZIN: THE †EGFR DIP' IN EMPA-REG OUTCOME. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	1
66	Effects of the SGLT2 inhibitor dapagliflozin on proteinuria in non-diabetic patients with chronic kidney disease (DIAMOND): a randomised, double-blind, crossover trial. Lancet Diabetes and Endocrinology,the, 2020, 8, 582-593.	11.4	155
67	TO002REDUCTION IN THE RATE OF EGFR DECLINE WITH SEMAGLUTIDE VS PLACEBO: A POST HOC POOLED ANALYSIS OF SUSTAIN 6 AND PIONEER 6. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	2
68	The impact of empagliflozin on kidney injury molecule-1: a subanalysis of the Effects of Empagliflozin on Cardiac Structure, Function, and Circulating Biomarkers in Patients with Type 2 Diabetes CardioLink-6 trial. Nephrology Dialysis Transplantation, 2020, 35, 895-897.	0.7	22
69	Renal hemodynamic effects of sodium-glucose cotransporter 2 inhibitors inÂhyperfiltering people with type 1 diabetes andÂpeople with type 2 diabetes and normal kidney function. Kidney International, 2020, 97, 631-635.	5.2	29
70	Sodium-Glucose Cotransporter-2 Inhibitors in Nephrology Practice: A Narrative Review. Canadian Journal of Kidney Health and Disease, 2020, 7, 205435812093570.	1.1	9
71	Rationale and protocol of the Dapagliflozin And Prevention of Adverse outcomes in Chronic Kidney Disease (DAPA-CKD) randomized controlled trial. Nephrology Dialysis Transplantation, 2020, 35, 274-282.	0.7	168
72	The authors reply. Kidney International, 2020, 97, 213-214.	5.2	0

#	Article	IF	CITATIONS
73	Effect of Uric Acid-Lowering Agents on Cardiovascular Outcome in Patients With Heart Failure: A Systematic Review and Meta-Analysis of Clinical Studies. Angiology, 2020, 71, 315-323.	1.8	22
74	CCS/CHFS Heart Failure Guidelines: Clinical Trial Update on Functional Mitral Regurgitation, SGLT2 Inhibitors, ARNI in HFpEF, and Tafamidis in Amyloidosis. Canadian Journal of Cardiology, 2020, 36, 159-169.	1.7	89
75	Effects of ertugliflozin on renal function over 104Âweeks of treatment: a post hoc analysis of two randomised controlled trials. Diabetologia, 2020, 63, 1128-1140.	6.3	33
76	What have we learned about renal protection from the cardiovascular outcome trials and observational analyses with SGLT2 inhibitors?. Diabetes, Obesity and Metabolism, 2020, 22, 55-68.	4.4	20
77	Case – Reflex anuria: A rare complication of retrograde pyelography. Canadian Urological Association Journal, 2020, 15, E380-E382.	0.6	3
78	The Impact of Sotagliflozin on Renal Function, Albuminuria, Blood Pressure, and Hematocrit in Adults With Type 1 Diabetes. Diabetes Care, 2019, 42, 1921-1929.	8.6	47
79	Renal hyperfiltration defined by high estimated glomerular filtration rate: A risk factor for cardiovascular disease and mortality. Diabetes, Obesity and Metabolism, 2019, 21, 2368-2383.	4.4	56
80	126 - Prevalence of Detectable C-peptide in Longstanding Type 1 Diabetes (T1D). Canadian Journal of Diabetes, 2019, 43, S43.	0.8	1
81	Antidiuretic Hormone and Serum Osmolarity Physiology and Related Outcomes: What Is Old, What Is New, and What Is Unknown?. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 5406-5420.	3.6	27
82	Biomarkers of Inflammation, Fibrosis, and Acute Kidney Injury in Patients with Heart Failure with and without Left Ventricular Assist Device Implantation. CardioRenal Medicine, 2019, 9, 108-116.	1.9	3
83	Estimating GFR by Serum Creatinine, Cystatin C, and β2-Microglobulin in Older Adults: Results From the Canadian Study of Longevity in Type 1 Diabetes. Kidney International Reports, 2019, 4, 786-796.	0.8	12
84	Exploring Patient Preferences for Adjunct-to-Insulin Therapy in Type 1 Diabetes. Diabetes Care, 2019, 42, 1716-1723.	8.6	10
85	Atherosclerotic Cardiovascular Disease and Chronic Kidney Disease. Journal of the American College of Cardiology, 2019, 73, 2971-2975.	2.8	5
86	Risk factors for diabetic kidney disease in adults with longstanding type 1 diabetes: results from the Canadian Study of Longevity in Diabetes. Renal Failure, 2019, 41, 427-433.	2.1	4
87	Preventing Early Renal Loss in Diabetes (PERL) Study: A Randomized Double-Blinded Trial of Allopurinol—Rationale, Design, and Baseline Data. Diabetes Care, 2019, 42, 1454-1463.	8.6	39
88	A Big Win for Diabetic Kidney Disease: CREDENCE. Cell Metabolism, 2019, 29, 1024-1027.	16.2	23
89	Analysis from the EMPA-REG OUTCOME® trialÂindicates empagliflozin may assist in preventingÂtheÂprogression of chronic kidney disease in patients with type 2 diabetes irrespective of medications that alter intrarenal hemodynamics. Kidney International, 2019, 96, 489-504.	5.2	77
90	Sodium glucose cotransporter (SGLT)â€2 inhibitors: Do we need them for glucoseâ€lowering, for cardiorenal protection or both?. Diabetes, Obesity and Metabolism, 2019, 21, 24-33.	4.4	17

#	Article	IF	CITATIONS
91	Molecular regulation of the renin–angiotensin system by sodium–glucose cotransporter 2 inhibition in type 1 diabetes mellitus. Diabetologia, 2019, 62, 1090-1093.	6.3	21
92	Renal Angiotensinogen and Sodium-Glucose Cotransporter-2 Inhibition: Insights from Experimental Diabetic Kidney Disease. American Journal of Nephrology, 2019, 49, 328-330.	3.1	13
93	Renal Hemodynamic Function and RAAS Activation Over the Natural History of Type 1 Diabetes. American Journal of Kidney Diseases, 2019, 73, 786-796.	1.9	15
94	Evaluation of Glomerular Hemodynamic Function by Empagliflozin in Diabetic Mice Using In Vivo Imaging. Circulation, 2019, 140, 303-315.	1.6	202
95	Association between uric acid, renal haemodynamics and arterial stiffness over the natural history of type 1 diabetes. Diabetes, Obesity and Metabolism, 2019, 21, 1388-1398.	4.4	12
96	Bone mineral density in patients with longstanding type 1 diabetes: Results from the Canadian Study of Longevity in Type 1 Diabetes. Journal of Diabetes and Its Complications, 2019, 33, 107324.	2.3	21
97	The relationships between markers of tubular injury and intrarenal haemodynamic function in adults with and without type 1 diabetes: Results from the Canadian Study of Longevity in Type 1 Diabetes. Diabetes, Obesity and Metabolism, 2019, 21, 575-583.	4.4	15
98	Retinopathy and RAAS Activation: Results From the Canadian Study of Longevity in Type 1 Diabetes. Diabetes Care, 2019, 42, 273-280.	8.6	16
99	Serum Uromodulin Predicts Less Coronary Artery Calcification and Diabetic Kidney Disease Over 12 Years in Adults With Type 1 Diabetes: The CACTI Study. Diabetes Care, 2019, 42, 297-302.	8.6	34
100	In Response. Anesthesia and Analgesia, 2018, 126, 1792-1793.	2.2	0
101	Chronic Kidney Disease in Diabetes. Canadian Journal of Diabetes, 2018, 42, S201-S209.	0.8	57
102	Adiposity Impacts Intrarenal Hemodynamic Function in Adults With Long-standing Type 1 Diabetes With and Without Diabetic Nephropathy: Results From the Canadian Study of Longevity in Type 1 Diabetes. Diabetes Care, 2018, 41, 831-839.	8.6	13
103	Novel therapies for diabetic kidney disease. Kidney International Supplements, 2018, 8, 18-25.	14.2	37
104	Renoprotective effects of sodium-glucose cotransporter-2 inhibitors. Kidney International, 2018, 94, 26-39.	5.2	262
105	Improvements in peripheral vascular function with vitamin D treatment in deficient adolescents with type 1 diabetes. Pediatric Diabetes, 2018, 19, 457-463.	2.9	24
106	Perioperative Considerations for the Use of Sodium-Glucose Cotransporter-2 Inhibitors in Patients With Type 2 Diabetes. Anesthesia and Analgesia, 2018, 126, 699-704.	2.2	23
107	Pooled analysis of Phase III trials indicate contrasting influences of renal function on bloodÂpressure, body weight, and HbA1c reductions with empagliflozin. Kidney International, 2018, 93, 231-244.	5.2	174
108	Plasma biomarkers improve prediction of diabetic kidney disease in adults with type 1 diabetes over a 12-year follow-up: CACTI study. Nephrology Dialysis Transplantation, 2018, 33, 1189-1196.	0.7	18

#	Article	IF	CITATIONS
109	Dapagliflozin in focal segmental glomerulosclerosis: a combined human-rodent pilot study. American Journal of Physiology - Renal Physiology, 2018, 314, F412-F422.	2.7	68
110	Diabetes Care Disparities in Long-standing Type 1 Diabetes in Canada and the U.S.: A Cross-sectional Comparison. Diabetes Care, 2018, 41, 88-95.	8.6	17
111	Managing the Course of Kidney Disease in Adults With Type 2 Diabetes: From the Old to the New. Canadian Journal of Diabetes, 2018, 42, 325-334.	0.8	11
112	Empagliflozin as Adjunctive to Insulin Therapy in Type 1 Diabetes: The EASE Trials. Diabetes Care, 2018, 41, 2560-2569.	8.6	239
113	Atherosclerosis and Microvascular Complications: Results From the Canadian Study of Longevity in Type 1 Diabetes. Diabetes Care, 2018, 41, 2570-2578.	8.6	37
114	Cardiovascular Risk Reduction in PatientsÂWith Chronic Kidney Disease. Journal of the American College of Cardiology, 2018, 71, 2415-2418.	2.8	11
115	Acute Effect of Empagliflozin on Fractional Excretion of Sodium and eGFR in Youth With Type 2 Diabetes. Diabetes Care, 2018, 41, e129-e130.	8.6	27
116	Antihyperglycemic agents as novel natriuretic therapies in diabetic kidney disease. American Journal of Physiology - Renal Physiology, 2018, 315, F1406-F1415.	2.7	22
117	Hyperfiltration, urinary albumin excretion, and ambulatory blood pressure in adolescents with Type 1 diabetes mellitus. American Journal of Physiology - Renal Physiology, 2018, 314, F667-F674.	2.7	41
118	Beta cell preservation in patients with type 1 diabetes. Nature Medicine, 2018, 24, 1089-1090.	30.7	6
119	In Response. Anesthesia and Analgesia, 2018, 127, 307-308.	2.2	0
120	The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia, 2018, 61, 2098-2107.	6.3	234
121	Sodium glucose cotransporter 2 inhibition and renal ischemia: implications for future clinicalÂtrials. Kidney International, 2018, 94, 459-462.	5.2	35
122	Dulaglutide and renal protection in type 2 diabetes. Lancet Diabetes and Endocrinology,the, 2018, 6, 588-590.	11.4	11
123	Renin-angiotensin-aldosterone system activation in long-standing type 1 diabetes. JCI Insight, 2018, 3, .	5.0	38
124	Influence of sex on hyperfiltration in patients with uncomplicated type 1 diabetes. American Journal of Physiology - Renal Physiology, 2017, 312, F599-F606.	2.7	22
125	Renal and Vascular Effects of Uric Acid Lowering in Normouricemic Patients With Uncomplicated Type 1 Diabetes. Diabetes, 2017, 66, 1939-1949.	0.6	28
126	Use of Canagliflozin in Kidney Transplant Recipients for the Treatment of Type 2 Diabetes: A Case Series. Diabetes Care, 2017, 40, e75-e76.	8.6	55

#	Article	IF	CITATIONS
127	The relationship between urinary renin-angiotensin system markers, renal function, and blood pressure in adolescents with type 1 diabetes. American Journal of Physiology - Renal Physiology, 2017, 312, F335-F342.	2.7	33
128	Neuropathy and presence of emotional distress and depression in longstanding diabetes: Results from the Canadian study of longevity in type 1 diabetes. Journal of Diabetes and Its Complications, 2017, 31, 1318-1324.	2.3	37
129	The Metabolodiuretic Promise of Sodium-Dependent Glucose Cotransporter 2 Inhibition. JAMA Cardiology, 2017, 2, 939.	6.1	135
130	Dipeptidyl Peptidase 4 Inhibition Stimulates Distal Tubular Natriuresis and Increases in Circulating SDF-1α1-67 in Patients With Type 2 Diabetes. Diabetes Care, 2017, 40, 1073-1081.	8.6	82
131	Urinary adenosine excretion in type 1 diabetes. American Journal of Physiology - Renal Physiology, 2017, 313, F184-F191.	2.7	46
132	Calcium channel blockade blunts the renal effects of acute nitric oxide synthase inhibition in healthy humans. American Journal of Physiology - Renal Physiology, 2017, 312, F870-F878.	2.7	3
133	Response to Comment on Lovshin et al. Dipeptidyl Peptidase 4 Inhibition Stimulates Distal Tubular Natriuresis and Increases in Circulating SDF-11± 1-67 in Patients With Type 2 Diabetes. Diabetes Care 2017;40:1073-1081. Diabetes Care, 2017, 40, e159-e160.	8.6	0
134	Sodium Glucose Cotransporter-2 Inhibition in Heart Failure. Circulation, 2017, 136, 1643-1658.	1.6	340
135	Relationship between serum inflammatory markers and vascular function in a cohort of adolescents with type 1 diabetes. Cytokine, 2017, 99, 233-239.	3.2	27
136	Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: an exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial. Lancet Diabetes and Endocrinology,the, 2017, 5, 610-621.	11.4	301
137	The effect of sodium/glucose cotransporter 2 (SGLT2) inhibition on the urinary proteome. PLoS ONE, 2017, 12, e0186910.	2.5	21
138	Lower corneal nerve fibre length identifies diabetic neuropathy in older adults with diabetes: results from the Canadian Study of Longevity in Type 1 Diabetes. Diabetologia, 2017, 60, 2529-2531.	6.3	14
139	The Gomez equations and renal hemodynamic function in kidney disease research. American Journal of Physiology - Renal Physiology, 2016, 311, F967-F975.	2.7	35
140	Use of Sodium Glucose Cotransporter 2 Inhibitors in the Hands of Cardiologists. Circulation, 2016, 134, 1915-1917.	1.6	50
141	No Need to Sugarcoat the Message: Is Cardiovascular RiskÂReduction From SGLT2ÂInhibition Related to Natriuresis?. American Journal of Kidney Diseases, 2016, 68, 349-352.	1.9	18
142	Prevalence of Insulin Pump Therapy and Its Association with Measures of Glycemic Control: Results from the Canadian Study of Longevity in Type 1 Diabetes. Diabetes Technology and Therapeutics, 2016, 18, 298-307.	4.4	25
143	Sodium Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus. Circulation, 2016, 134, 752-772.	1.6	932
144	The Effect of SGLT2 Inhibition on Urinary Adenosine Excretion in Patients with Type 1 Diabetes. Canadian Journal of Diabetes, 2016, 40, S64.	0.8	2

#	Article	IF	CITATIONS
145	Hemodynamic and neurochemical determinates of renal function in chronic heart failure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R167-R175.	1.8	11
146	Cardiovascular disease guideline adherence and self-reported statin use in longstanding type 1 diabetes: results from the Canadian study of longevity in diabetes cohort. Cardiovascular Diabetology, 2016, 15, 14.	6.8	29
147	The effect of sodium glucose cotransporter 2 inhibition with empagliflozin on microalbuminuria and macroalbuminuria in patients with type 2 diabetes. Diabetologia, 2016, 59, 1860-1870.	6.3	148
148	Early changes in cardiovascular structure and function in adolescents with type 1 diabetes. Cardiovascular Diabetology, 2016, 15, 31.	6.8	64
149	Sodium–glucose cotransporter 2 inhibition and cardiovascular risk reduction in patients with type 2 diabetes: the emerging role of natriuresis. Kidney International, 2016, 89, 524-526.	5.2	105
150	Association Between Plasma Uric Acid Levels and Cardiorenal Function in Adolescents With Type 1 Diabetes. Diabetes Care, 2016, 39, 611-616.	8.6	22
151	The urinary inflammatory profile in gluten free diet—adherent adolescents with type 1 diabetes and celiac disease. Journal of Diabetes and Its Complications, 2016, 30, 295-299.	2.3	6
152	New and old agents in the management of diabetic nephropathy. Current Opinion in Nephrology and Hypertension, 2016, 25, 232-239.	2.0	31
153	The effect of sex on humanin levels in healthy adults and patients with uncomplicated type 1 diabetes mellitus. Canadian Journal of Physiology and Pharmacology, 2015, 93, 239-243.	1.4	8
154	Uric Acid as a Biomarker and a Therapeutic Target in Diabetes. Canadian Journal of Diabetes, 2015, 39, 239-246.	0.8	103
155	GLP-1R Agonists and Endothelial Dysfunction: More Than Just Glucose Lowering?. Diabetes, 2015, 64, 2319-2321.	0.6	14
156	Reference Values for Pulse Wave Doppler and Tissue Doppler Imaging in Pediatric Echocardiography. Circulation: Cardiovascular Imaging, 2015, 8, e002167.	2.6	77
157	Sodium–glucose cotransporter-2 inhibition and the potential for renal protection in diabetic nephropathy. Current Opinion in Nephrology and Hypertension, 2015, 24, 96-103.	2.0	134
158	Glycosuria-mediated urinary uric acid excretion in patients with uncomplicated type 1 diabetes mellitus. American Journal of Physiology - Renal Physiology, 2015, 308, F77-F83.	2.7	143
159	Diurnal Glycemic Patterns during an 8-Week Open-Label Proof-of-Concept Trial of Empagliflozin in Type 1 Diabetes. PLoS ONE, 2015, 10, e0141085.	2.5	28
160	The Urinary Cytokine/Chemokine Signature of Renal Hyperfiltration in Adolescents with Type 1 Diabetes. PLoS ONE, 2014, 9, e111131.	2.5	18
161	Sodium glucose cotransport-2 inhibition and intrarenal RAS activity in people with type 1 diabetes. Kidney International, 2014, 86, 1057-1058.	5.2	93
162	Sodium-Glucose Cotransporter 2 Inhibition and Glycemic Control in Type 1 Diabetes: Results of an 8-Week Open-Label Proof-of-Concept Trial. Diabetes Care, 2014, 37, 1480-1483.	8.6	211

#	Article	IF	CITATIONS
163	Urinary ACE2 in healthy adults and patients with uncomplicated type 1 diabetes. Canadian Journal of Physiology and Pharmacology, 2014, 92, 703-706.	1.4	23
164	Characterisation of glomerular haemodynamic responses to SGLT2 inhibition in patients with type 1 diabetes and renal hyperfiltration. Diabetologia, 2014, 57, 2599-2602.	6.3	136
165	Early diabetic nephropathy in type 1 diabetes. Current Opinion in Endocrinology, Diabetes and Obesity, 2014, 21, 279-286.	2.3	101
166	Gender, clamped hyperglycemia and arterial stiffness in patients with uncomplicated type 1 diabetes mellitus. Clinical and Experimental Hypertension, 2014, 36, 187-193.	1.3	7
167	Renal Hemodynamic Effect of Sodium-Glucose Cotransporter 2 Inhibition in Patients With Type 1 Diabetes Mellitus. Circulation, 2014, 129, 587-597.	1.6	1,045
168	The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. Cardiovascular Diabetology, 2014, 13, 28.	6.8	381
169	The effect of sex on endothelial function responses to clamped hyperglycemia in type 1 diabetes. Hypertension Research, 2014, 37, 220-224.	2.7	2
170	Renal Hyperfiltration Is Associated With Glucose-Dependent Changes in Fractional Excretion of Sodium in Patients With Uncomplicated Type 1 Diabetes. Diabetes Care, 2014, 37, 2774-2781.	8.6	6
171	Sodium-Glucose Cotransporter 2 Inhibition in Type 1 Diabetes: Simultaneous Glucose Lowering and Renal Protection?. Canadian Journal of Diabetes, 2014, 38, 356-363.	0.8	35
172	Prucalopride-associated acute tubular necrosis. World Journal of Clinical Cases, 2014, 2, 380.	0.8	9
173	Fasting Blood Glucose-A Missing Variable for GFR-Estimation in Type 1 Diabetes?. PLoS ONE, 2014, 9, e96264.	2.5	11
174	The effect of aliskiren on urinary cytokine/chemokine responses to clamped hyperglycaemia in type 1 diabetes. Diabetologia, 2013, 56, 2308-2317.	6.3	13
175	Uric Acid Lowering to Prevent Kidney Function Loss in Diabetes: The Preventing Early Renal Function Loss (PERL) Allopurinol Study. Current Diabetes Reports, 2013, 13, 550-559.	4.2	127
176	Long-term hemodynamic and molecular effects persist after discontinued renin–angiotensin system blockade in patients with type 1 diabetes mellitus. Kidney International, 2013, 84, 1246-1253.	5.2	9
177	Sex Differences in Renal Responses to Hyperglycemia, <scp>l</scp> -Arginine, and <scp>l</scp> -NMMA in Humans With Uncomplicated Type 1 Diabetes. Diabetes Care, 2013, 36, 1290-1296.	8.6	14
178	Renal Hyperfiltration and Systemic Blood Pressure in Patients with Uncomplicated Type 1 Diabetes Mellitus. PLoS ONE, 2013, 8, e68908.	2.5	23
179	Hyperfiltration and effect of nitric oxide inhibition on renal and endothelial function in humans with uncomplicated type 1 diabetes mellitus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R710-R718.	1.8	60
180	Ability of Cystatin C to Detect Changes in Glomerular Filtration Rate After ACE Inhibition in Patients with Uncomplicated Type 1 Diabetes. Clinical and Experimental Hypertension, 2012, 34, 606-611.	1.3	6

#	Article	IF	CITATIONS
181	The Effect of Direct Renin Inhibition Alone and in Combination With ACE Inhibition on Endothelial Function, Arterial Stiffness, and Renal Function in Type 1 Diabetes. Diabetes Care, 2012, 35, 2324-2330.	8.6	44
182	Systemic hemodynamic function in humans with type 1 diabetes treated with protein kinase Cβ inhibition and renin–angiotensin system blockade: a pilot study. Canadian Journal of Physiology and Pharmacology, 2012, 90, 113-121.	1.4	9
183	Cystatin C and acute changes in glomerular filtration rate. Clinical Nephrology, 2012, 78, 64-75.	0.7	45
184	Renal hyperfiltration related to diabetes mellitus and obesity in human disease. World Journal of Diabetes, 2012, 3, 1.	3.5	126
185	Evolution of Renal Hyperfiltration and Arterial Stiffness From Adolescence Into Early Adulthood in Type 1 Diabetes. Diabetes Care, 2011, 34, 1821-1826.	8.6	17
186	The Acute Effect of Clamped Hyperglycemia on the Urinary Excretion of Inflammatory Cytokines/Chemokines in Uncomplicated Type 1 Diabetes: A pilot study. Diabetes Care, 2011, 34, 177-180.	8.6	53
187	Renal Hyperfiltration Is a Determinant of Endothelial Function Responses to Cyclooxygenase 2 Inhibition in Type 1 Diabetes. Diabetes Care, 2010, 33, 1344-1346.	8.6	66
188	Effect of Direct Renin Inhibition on Renal Hemodynamic Function, Arterial Stiffness, and Endothelial Function in Humans With Uncomplicated Type 1 Diabetes. Diabetes Care, 2010, 33, 361-365.	8.6	84
189	Renal Hyperfiltration and Arterial Stiffness in Humans With Uncomplicated Type 1 Diabetes. Diabetes Care, 2010, 33, 2068-2070.	8.6	32
190	Age is a determinant of acute hemodynamic responses to hyperglycemia and angiotensin II in humans with uncomplicated type 1 diabetes mellitus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R206-R214.	1.8	26
191	The angiotensin II receptor type 2 polymorphism influences haemodynamic function and circulating RAS mediators in normotensive humans. Nephrology Dialysis Transplantation, 2010, 25, 4093-4096.	0.7	9
192	Effect of Protein Kinase Cβ Inhibition on Renal Hemodynamic Function and Urinary Biomarkers in Humans With Type 1 Diabetes: A Pilot Study. Diabetes Care, 2009, 32, 91-93.	8.6	38
193	The Effect of Cyclooxygenase-2 Inhibition on Renal Hemodynamic Function in Humans With Type 1 Diabetes. Diabetes, 2008, 57, 688-695.	0.6	84
194	Renal hemodynamic effect of cyclooxygenase 2 inhibition in young men and women with uncomplicated type 1 diabetes mellitus. American Journal of Physiology - Renal Physiology, 2008, 294, F1336-F1341.	2.7	41
195	Insights into the Regulation of Renal Hemodynamic Function in Diabetic Mellitus. Current Diabetes Reviews, 2008, 4, 280-290.	1.3	51
196	Impact of Renin Angiotensin System Modulation on the Hyperfiltration State in Type 1 Diabetes. Journal of the American Society of Nephrology: JASN, 2006, 17, 1703-1709.	6.1	117
197	Gender differences in renal responses to hyperglycemia and angiotensin-converting enzyme inhibition in diabetes. Kidney International, 2005, 68, 1722-1728.	5.2	71
198	Natural history and outcome of incarcerated abdominal hernias in peritoneal dialysis patients. Advances in Peritoneal Dialysis Conference on Peritoneal Dialysis, 2004, 20, 86-9.	0.1	26

#	Article	IF	CITATIONS
199	Management of patients with hypertensive urgencies and emergencies. Journal of General Internal Medicine, 2002, 17, 937-945.	2.6	135