List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9174910/publications.pdf Version: 2024-02-01

ROBERT M HAZEN

#	Article	IF	CITATIONS
1	Incorporate temporal topology in a deepâ€time knowledge base to facilitate dataâ€driven discovery in geoscience. Geoscience Data Journal, 2023, 10, 489-499.	4.4	0
2	On the paragenetic modes of minerals: A mineral evolution perspective. American Mineralogist, 2022, 107, 1262-1287.	1.9	31
3	Lumping and splitting: Toward a classification of mineral natural kinds. American Mineralogist, 2022, 107, 1288-1301.	1.9	13
4	Evidence that the GOE was a prolonged event with a peak around 1900 Ma. Geosystems and Geoenvironment, 2022, 1, 100036.	3.2	13
5	Evidence for the oxidation of Earth's crust from the evolution of manganese minerals. Nature Communications, 2022, 13, 960.	12.8	15
6	Structural and chemical complexity of minerals: an update. Mineralogical Magazine, 2022, 86, 183-204.	1.4	34
7	The expanding network of mineral chemistry throughout earth history reveals global shifts in crustal chemistry during the Proterozoic. Scientific Reports, 2022, 12, 4956.	3.3	4
8	Mineral Element Insiders and Outliers Play Crucial Roles in Biological Evolution. Life, 2022, 12, 951.	2.4	0
9	Global earth mineral inventory: A data legacy. Geoscience Data Journal, 2021, 8, 74-89.	4.4	21
10	Cluster Analysis of Presolar Silicon Carbide Grains: Evaluation of Their Classification and Astrophysical Implications. Astrophysical Journal Letters, 2021, 907, L39.	8.3	18
11	Reply to "A comment on â€~An evolutionary system of mineralogy: Proposal for a classification of planetary materials based on natural kind clustering'― American Mineralogist, 2021, 106, 154-156.	1.9	5
12	The Deep-Time Digital Earth program: data-driven discovery in geosciences. National Science Review, 2021, 8, nwab027.	9.5	55
13	Geological Factors Impacted Cadmium Availability and use as an Alternative Cofactor for Zinc in the Carbon Fixation Pathways of Marine Diatoms. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005966.	3.0	2
14	An evolutionary system of mineralogy. Part III: Primary chondrule mineralogy (4566 to 4561 Ma). American Mineralogist, 2021, 106, 325-350.	1.9	17
15	Association announcement 2021 Felix Chayes Prize. Computers and Geosciences, 2021, 150, 104743.	4.2	0
16	An evolutionary system of mineralogy, Part IV: Planetesimal differentiation and impact mineralization (4566 to 4560 Ma). American Mineralogist, 2021, 106, 730-761.	1.9	19
17	Brine-driven destruction of clay minerals in Gale crater, Mars. Science, 2021, 373, 198-204.	12.6	52
18	A Review of the Phyllosilicates in Gale Crater as Detected by the CheMin Instrument on the Mars Science Laboratory, Curiosity Rover. Minerals (Basel, Switzerland), 2021, 11, 847.	2.0	23

#	Article	IF	CITATIONS
19	An evolutionary system of mineralogy, Part V: Aqueous and thermal alteration of planetesimals (~4565) Tj ETQq1	1 _{1.9} 78431	l4rgBT /Ov 13
20	Phosphorus mineral evolution and prebiotic chemistry: From minerals to microbes. Earth-Science Reviews, 2021, 221, 103806.	9.1	26
21	Historical natural kinds and mineralogy: Systematizing contingency in the context of necessity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
22	Evaluation of the classification of pre-solar silicon carbide grains using consensus clustering with resampling methods: An assessment of the confidence of grain assignments. Monthly Notices of the Royal Astronomical Society, 2021, 510, 334-350.	4.4	10
23	An evolutionary system of mineralogy, part II: Interstellar and solar nebula primary condensation mineralogy (> 4.565 Ga). American Mineralogist, 2020, 105, 1508-1535.	1.9	36
24	An evolutionary system of mineralogy. Part I: Stellar mineralogy (>13 to 4.6 Ga). American Mineralogist, 2020, 105, 627-651.	1.9	53
25	Mineralogy of Vera Rubin Ridge From the Mars Science Laboratory CheMin Instrument. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006306.	3.6	86
26	Hydrothermal Precipitation of Sanidine (Adularia) Having Full Al,Si Structural Disorder and Specular Hematite at Maunakea Volcano (Hawai'i) and at Gale Crater (Mars). Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006324.	3.6	14
27	Evidence for Multiple Diagenetic Episodes in Ancient Fluvial‣acustrine Sedimentary Rocks in Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006295.	3.6	45
28	Cycling phosphorus on the Archean Earth: Part I. Continental weathering and riverine transport of phosphorus. Geochimica Et Cosmochimica Acta, 2020, 273, 70-84.	3.9	36
29	Cycling phosphorus on the Archean Earth: Part II. Phosphorus limitation on primary production in Archean ecosystems. Geochimica Et Cosmochimica Acta, 2020, 280, 360-377.	3.9	39
30	Deciphering Biosignatures in Planetary Contexts. Astrobiology, 2019, 19, 1075-1102.	3.0	66
31	Statistical analysis of mineral evolution and mineral ecology: The current state and a vision for the future. Applied Computing and Geosciences, 2019, 1, 100005.	2.2	20
32	Earth in five reactions: Grappling with meaning and value in science. American Mineralogist, 2019, , .	1.9	0
33	An evolutionary system of mineralogy: Proposal for a classification of planetary materials based on natural kind clustering. American Mineralogist, 2019, 104, 810-816.	1.9	41
34	Data-Driven Discovery in Mineralogy: Recent Advances in Data Resources, Analysis, and Visualization. Engineering, 2019, 5, 397-405.	6.7	47
35	Redox states of Archean surficial environments: The importance of H2,g instead of O2,g for weathering reactions. Chemical Geology, 2019, 521, 49-58.	3.3	14
36	The same and not the same: Ore geology, mineralogy and geochemistry of Rodinia assembly versus other supercontinents. Earth-Science Reviews, 2019, 196, 102860.	9.1	16

#	Article	IF	CITATIONS
37	Bayesian Estimation of Earth's Undiscovered Mineralogical Diversity Using Noninformative Priors. Mathematical Geosciences, 2019, 51, 401-417.	2.4	25
38	Ediacaran biozones identified with network analysis provide evidence for pulsed extinctions of early complex life. Nature Communications, 2019, 10, 911.	12.8	74
39	Lithium mineral evolution and ecology: comparison with boron and beryllium. European Journal of Mineralogy, 2019, 31, 755-774.	1.3	23
40	Selective Adsorption of Aspartate Facilitated by Calcium on Brucite [Mg(OH)2]. ACS Earth and Space Chemistry, 2019, 3, 1-7.	2.7	5
41	An evolutionary system of mineralogy: Proposal for a classification of planetary materials based on natural kind clustering. American Mineralogist, 2019, , .	1.9	0
42	Quantifying ecological impacts of mass extinctions with network analysis of fossil communities. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5217-5222.	7.1	81
43	Parisite-(La), ideally CaLa ₂ (CO ₃) ₃ F ₂ , a new mineral from Novo Horizonte, Bahia, Brazil. Mineralogical Magazine, 2018, 82, 133-144.	1.4	9
44	Geological and Chemical Factors that Impacted the Biological Utilization of Cobalt in the Archean Eon. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 743-759.	3.0	24
45	Gypsum, bassanite, and anhydrite at Gale crater, Mars. American Mineralogist, 2018, 103, 1011-1020.	1.9	96
46	Crystal chemistry of martian minerals from Bradbury Landing through Naukluft Plateau, Gale crater, Mars. American Mineralogist, 2018, 103, 857-871.	1.9	94
47	Relationships between unit-cell parameters and composition for rock-forming minerals on Earth, Mars, and other extraterrestrial bodies. American Mineralogist, 2018, 103, 848-856.	1.9	40
48	The Paleomineralogy of the Hadean Eon Revisited. Life, 2018, 8, 64.	2.4	27
49	Titan mineralogy: A window on organic mineral evolution. American Mineralogist, 2018, 103, 341-342.	1.9	11
50	Structural and chemical complexity of minerals: correlations and time evolution. European Journal of Mineralogy, 2018, 30, 231-236.	1.3	47
51	Sand Mineralogy Within the Bagnold Dunes, Gale Crater, as Observed In Situ and From Orbit. Geophysical Research Letters, 2018, 45, 9488-9497.	4.0	52
52	UV irradiation of biomarkers adsorbed on minerals under Martian-like conditions: Hints for life detection on Mars. Icarus, 2018, 313, 38-60.	2.5	44
53	Analysis and visualization of vanadium mineral diversity and distribution. American Mineralogist, 2018, 103, 1080-1086.	1.9	28
54	Binding of Nucleic Acid Components to the Serpentinite-Hosted Hydrothermal Mineral Brucite. Astrobiology, 2018, 18, 989-1007.	3.0	18

#	Article	IF	CITATIONS
55	Clay mineral diversity and abundance in sedimentary rocks of Gale crater, Mars. Science Advances, 2018, 4, eaar3330.	10.3	150
56	Cobalt mineral ecology. American Mineralogist, 2017, 102, 108-116.	1.9	43
57	On the mineralogy of the "Anthropocene Epoch― American Mineralogist, 2017, 102, 595-611.	1.9	65
58	Chromium mineral ecology. American Mineralogist, 2017, 102, 612-619.	1.9	31
59	Mineralogy of an active eolian sediment from the Namib dune, Gale crater, Mars. Journal of Geophysical Research E: Planets, 2017, 122, 2344-2361.	3.6	98
60	Mobility of nutrients and trace metals during weathering in the late Archean. Earth and Planetary Science Letters, 2017, 471, 148-159.	4.4	24
61	Shielding biomolecules from effects of radiation by Mars analogue minerals and soils. International Journal of Astrobiology, 2017, 16, 280-285.	1.6	28
62	Cooperative and Inhibited Adsorption of <scp>d</scp> -Ribose onto Brucite [Mg(OH) ₂] with Divalent Cations. ACS Earth and Space Chemistry, 2017, 1, 591-600.	2.7	4
63	Aspartate transformation at 200 °C with brucite [Mg(OH)2], NH3, and H2: Implications for prebiotic molecules in hydrothermal systems. Chemical Geology, 2017, 457, 162-172.	3.3	9
64	How many boron minerals occur in Earth's upper crust?. American Mineralogist, 2017, 102, 1573-1587.	1.9	56
65	Network analysis of mineralogical systems. American Mineralogist, 2017, 102, 1588-1596.	1.9	63
66	Geochemical and mineralogical evidence that Rodinian assembly was unique. Nature Communications, 2017, 8, 1950.	12.8	33
67	Chance, necessity and the origins of life: a physical sciences perspective. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160353.	3.4	22
68	Relative Abundances of Mineral Species: A Statistical Measure to Characterize Earth-like Planets Based on Earth's Mineralogy. Mathematical Geosciences, 2017, 49, 179-194.	2.4	10
69	A model for late Archean chemical weathering and world average river water. Earth and Planetary Science Letters, 2017, 457, 191-203.	4.4	46
70	Using Visual Exploratory Data Analysis to Facilitate Collaboration and Hypothesis Generation in Cross-Disciplinary Research. ISPRS International Journal of Geo-Information, 2017, 6, 368.	2.9	27
71	Evolution of Structural Complexity In Boron Minerals. Canadian Mineralogist, 2016, 54, 125-143.	1.0	57
72	Carbon mineral ecology: Predicting the undiscovered minerals of carbon. American Mineralogist, 2016, 101, 889-906.	1.9	46

#	Article	IF	CITATIONS
73	Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin Xâ€ray diffraction of the Windjana sample (Kimberley area, Gale Crater). Journal of Geophysical Research E: Planets, 2016, 121, 75-106.	3.6	159
74	Silicic volcanism on Mars evidenced by tridymite in high-SiO ₂ sedimentary rock at Gale crater. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7071-7076.	7.1	158
75	On the nature and significance of rarity in mineralogy. American Mineralogist, 2016, 101, 1245-1251.	1.9	35
76	The origin and implications of clay minerals from Yellowknife Bay, Gale crater, Mars. American Mineralogist, 2015, 100, 824-836.	1.9	122
77	A Tribute to Martin D. Brasier: Palaeobiologist and Astrobiologist (April 12, 1947–December 16, 2014). Astrobiology, 2015, 15, 940-948.	3.0	2
78	Attachment of Ribonucleotides on α-Alumina as a Function of pH, Ionic Strength, and Surface Loading. Langmuir, 2015, 31, 240-248.	3.5	27
79	Mineral Species Frequency Distribution Conforms to a Large Number of Rare Events Model: Prediction of Earth's Missing Minerals. Mathematical Geosciences, 2015, 47, 647-661.	2.4	65
80	Boron isotopes in tourmaline from the ca. 3.7–3.8Ga Isua supracrustal belt, Greenland: Sources for boron in Eoarchean continental crust and seawater. Geochimica Et Cosmochimica Acta, 2015, 163, 156-177.	3.9	48
81	Statistical analysis of mineral diversity and distribution: Earth's mineralogy is unique. Earth and Planetary Science Letters, 2015, 426, 154-157.	4.4	46
82	Interaction between l-aspartate and the brucite [Mg(OH)2]–water interface. Geochimica Et Cosmochimica Acta, 2015, 155, 172-186.	3.9	16
83	Microbes, Mineral Evolution, and the Rise of Microcontinents—Origin and Coevolution of Life with Early Earth. Astrobiology, 2015, 15, 922-939.	3.0	31
84	MINERAL ECOLOGY: CHANCE AND NECESSITY IN THE MINERAL DIVERSITY OF TERRESTRIAL PLANETS. Canadian Mineralogist, 2015, 53, 295-324.	1.0	75
85	Earth's "missing―minerals. American Mineralogist, 2015, 100, 2344-2347.	1.9	54
86	Hydrogen enhances the stability of glutamic acid in hydrothermal environments. Chemical Geology, 2014, 386, 184-189.	3.3	8
87	Ferrian saponite from the Santa Monica Mountains (California, U.S.A., Earth): Characterization as an analog for clay minerals on Mars with application to Yellowknife Bay in Gale Crater. American Mineralogist, 2014, 99, 2234-2250.	1.9	67
88	Data-driven abductive discovery in mineralogy. American Mineralogist, 2014, 99, 2165-2170.	1.9	41
89	Enantioselective adsorption on rock-forming minerals: A thought experiment. Surface Science, 2014, 629, 11-14.	1.9	4
90	Beryllium mineral evolution. American Mineralogist, 2014, 99, 999-1021.	1.9	58

#	Article	IF	CITATIONS
91	Cooperative and Competitive Adsorption of Amino Acids with Ca ²⁺ on Rutile (α-TiO ₂). Environmental Science & Technology, 2014, 48, 9358-9365.	10.0	29
92	The effects of temperature, pH and redox state on the stability of glutamic acid in hydrothermal fluids. Geochimica Et Cosmochimica Acta, 2014, 135, 66-86.	3.9	19
93	Carbon Mineralogy and Crystal Chemistry. Reviews in Mineralogy and Geochemistry, 2013, 75, 7-46.	4.8	91
94	Carbon Mineral Evolution. Reviews in Mineralogy and Geochemistry, 2013, 75, 79-107.	4.8	39
95	Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the <i>ca.</i> 3.48 Billion-Year-Old Dresser Formation, Pilbara, Western Australia. Astrobiology, 2013, 13, 1103-1124.	3.0	231
96	Clay mineral evolution. American Mineralogist, 2013, 98, 2007-2029.	1.9	112
97	On the Origins of Deep Hydrocarbons. Reviews in Mineralogy and Geochemistry, 2013, 75, 449-465.	4.8	76
98	Structure, Bonding, and Mineralogy of Carbon at Extreme Conditions. Reviews in Mineralogy and Geochemistry, 2013, 75, 47-77.	4.8	100
99	Rhenium variations in molybdenite (MoS2): Evidence for progressive subsurface oxidation. Earth and Planetary Science Letters, 2013, 366, 1-5.	4.4	71
100	Why Deep Carbon?. Reviews in Mineralogy and Geochemistry, 2013, 75, 1-6.	4.8	64
101	Atomic-Scale Surface Roughness of Rutile and Implications for Organic Molecule Adsorption. Langmuir, 2013, 29, 6876-6883.	3.5	16
102	Paleomineralogy of the Hadean Eon: A preliminary species list. Numerische Mathematik, 2013, 313, 807-843.	1.4	119
103	Carbon in Earth's interior: Storage, cycling, and life. Eos, 2012, 93, 17-18.	0.1	34
104	Speciation of <scp>l</scp> -DOPA on Nanorutile as a Function of pH and Surface Coverage Using Surface-Enhanced Raman Spectroscopy (SERS). Langmuir, 2012, 28, 17322-17330.	3.5	32
105	Mineral–organic interfacial processes: potential roles in the origins of life. Chemical Society Reviews, 2012, 41, 5502.	38.1	205
106	Mercury (Hg) mineral evolution: A mineralogical record of supercontinent assembly, changing ocean geochemistry, and the emerging terrestrial biosphere. American Mineralogist, 2012, 97, 1013-1042.	1.9	69
107	Evaluating Glutamate and Aspartate Binding Mechanisms to Rutile (α-TiO ₂) via ATR-FTIR Spectroscopy and Quantum Chemical Calculations. Langmuir, 2011, 27, 1778-1787.	3.5	65
108	Adsorption and Surface Complexation Study of L-DOPA on Rutile (α-TiO ₂) in NaCl Solutions. Environmental Science & Technology, 2011, 45, 3959-3966.	10.0	49

#	Article	IF	CITATIONS
109	Borate Minerals and Origin of the RNA World. Origins of Life and Evolution of Biospheres, 2011, 41, 307-316.	1.9	81
110	Needs and opportunities in mineral evolution research. American Mineralogist, 2011, 96, 953-963.	1.9	61
111	Mineral Evolution: Mineralogy in the Fourth Dimension. Elements, 2010, 6, 9-12.	0.5	117
112	Themes and Variations in Complex Systems. Elements, 2010, 6, 43-46.	0.5	24
113	How Old is Earth, and How Do We Know?. Evolution: Education and Outreach, 2010, 3, 198-205.	0.8	1
114	Acceptance of the Mineralogical Society of America Distinguished Public Service Medal for 2009. American Mineralogist, 2010, 95, 667-667.	1.9	0
115	Adsorption of Nucleic Acid Components on Rutile (TiO ₂) Surfaces. Astrobiology, 2010, 10, 311-323.	3.0	64
116	Mineral Surfaces, Geochemical Complexities, and the Origins of Life. Cold Spring Harbor Perspectives in Biology, 2010, 2, a002162-a002162.	5.5	262
117	Adsorption of l-aspartate to rutile (α-TiO2): Experimental and theoretical surface complexation studies. Geochimica Et Cosmochimica Acta, 2010, 74, 2356-2367.	3.9	53
118	Catalytic peptide hydrolysis by mineral surface: Implications for prebiotic chemistry. Geochimica Et Cosmochimica Acta, 2010, 74, 5852-5861.	3.9	51
119	The emergence of patterning in lifes origin and evolution. International Journal of Developmental Biology, 2009, 53, 683-692.	0.6	18
120	Evolution of uranium and thorium minerals. American Mineralogist, 2009, 94, 1293-1311.	1.9	176
121	Attachment of <scp>l</scp> -Glutamate to Rutile (α-TiO ₂): A Potentiometric, Adsorption, and Surface Complexation Study. Langmuir, 2009, 25, 12127-12135.	3.5	72
122	An actualistic perspective into Archean worlds – (cyanoâ€) bacterially induced sedimentary structures in the siliciclastic Nhlazatse Section, 2.9 Ga Pongola Supergroup, South Africa. Geobiology, 2008, 6, 5-20.	2.4	133
123	The first contribution of capillary electrophoresis to the study of abiotic origins of homochirality: Investigation of the enantioselective adsorption of 3 arboxy adipic acid on minerals. Electrophoresis, 2008, 29, 1548-1555.	2.4	11
124	Mineral evolution. American Mineralogist, 2008, 93, 1693-1720.	1.9	569
125	Glutamate Surface Speciation on Amorphous Titanium Dioxide and Hydrous Ferric Oxide. Environmental Science & Technology, 2008, 42, 6034-6039.	10.0	39
126	Inorganic Nitrogen Reduction and Stability under Simulated Hydrothermal Conditions. Astrobiology, 2008, 8, 1113-1126.	3.0	33

#	Article	IF	CITATIONS
127	Abiotic formation of RNA-like oligomers by montmorillonite catalysis: part II. International Journal of Astrobiology, 2008, 7, 1-7.	1.6	10
128	Functional information and the emergence of biocomplexity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8574-8581.	7.1	100
129	Debating Evidence for the Origin of Life on Earth. Science, 2007, 315, 937c-939c.	12.6	29
130	Anab initiostudy of adsorption of alanine on the chiral calcite surface. Molecular Simulation, 2007, 33, 343-351.	2.0	33
131	Sequence Analysis of Trimer Isomers Formed by Montmorillonite Catalysis in the Reaction of Binary Monomer Mixtures. Astrobiology, 2007, 7, 715-722.	3.0	17
132	Devonian landscape heterogeneity recorded by a giant fungus. Geology, 2007, 35, 399.	4.4	76
133	A new window into Early Archean life: Microbial mats in Earth's oldest siliciclastic tidal deposits (3.2) Tj ETQq1 1	0.784314 4.4	rgBT/Overlo
134	Spatial and temporal distribution of microbially induced sedimentary structures: A case study from siliciclastic storm deposits of the 2.9Ga Witwatersrand Supergroup, South Africa. Precambrian Research, 2006, 146, 35-44.	2.7	69
135	Presidential Address to the Mineralogical Society of America, Salt Lake City, October 18, 2005: Mineral surfaces and the prebiotic selection and organization of biomolecules. American Mineralogist, 2006, 91, 1715-1729.	1.9	117
136	Genesis: Rocks, Minerals, and the Geochemical Origin of Life. Elements, 2005, 1, 135-137.	0.5	35
137	Chiral Crystal Faces of Common Rock-Forming Minerals. , 2004, , 137-151.		43
138	Chiral indices of crystalline surfaces as a measure of enantioselective potential. Journal of Molecular Catalysis A, 2004, 216, 273-285.	4.8	47
139	Correlation of pH-dependent surface interaction forces to amino acid adsorption: Implications for the origin of life. American Mineralogist, 2004, 89, 1048-1055.	1.9	93
140	Chiral selection on inorganic crystalline surfaces. Nature Materials, 2003, 2, 367-374.	27.5	439
141	Earth's earliest microbial mats in a siliciclastic marine environment (2.9 Ga Mozaan Group, South) Tj ETQq1 1 0.7	84314 rgi 4.4	BT 10° verlock
142	Microbial Activity at Gigapascal Pressures. Science, 2002, 295, 1514-1516.	12.6	203
143	High pressure and the origin of life. Journal of Physics Condensed Matter, 2002, 14, 11489-11494.	1.8	41
144	Selective adsorption of L- and D-amino acids on calcite: Implications for biochemical homochirality. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5487-5490.	7.1	355

#	Article	IF	CITATIONS
145	Life's Rocky Start. Scientific American, 2001, 284, 76-85.	1.0	138
146	How old are bacteria from the Permian age?. Nature, 2001, 411, 155-155.	27.8	57
147	Nondestructive, in situ, cellular-scale mapping of elemental abundances including organic carbon in permineralized fossils. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5970-5974.	7.1	58
148	Comparative high-pressure crystal chemistry of wadsleyite, β-(Mg _{1–<i>x</i>} Fe _{<i>x</i>}) ₂ SiO ₄ , with <i>x</i> = 0 and 0.25. American Mineralogist, 2000, 85, 770-777.	1.9	55
149	High-pressure crystal chemistry of Fe ³⁺ -wadsleyite, β-Fe _{2.33} Si _{0.67} O ₄ . American Mineralogist, 2000, 85, 778-783.	1.9	14
150	Principles of Comparative Crystal Chemistry. Reviews in Mineralogy and Geochemistry, 2000, 41, 1-33.	4.8	56
151	Primordial Carbonylated Iron-Sulfur Compounds and the Synthesis of Pyruvate. Science, 2000, 289, 1337-1340.	12.6	392
152	Comparative Crystal Chemistry of Dense Oxide Minerals. Reviews in Mineralogy and Geochemistry, 2000, 41, 157-186.	4.8	36
153	Effects of cation substitution and order-disorder on P-V-T equations of state of cubic spinels. American Mineralogist, 1999, 84, 1956-1960.	1.9	79
154	Compressibility mechanisms of alkali feldspars; new data from reedmergnerite. American Mineralogist, 1999, 84, 333-340.	1.9	28
155	Comparative high-pressure crystal chemistry of karrooite, MgTi ₂ O ₅ , with different ordering states. American Mineralogist, 1999, 84, 130-137.	1.9	20
156	Thermodynamics of cation ordering in karrooite (MgTi2O5). American Mineralogist, 1999, 84, 1370-1374.	1.9	10
157	Crystal chemistry of high-pressure BaSi ₄ O ₉ in the trigonal (P3) barium tetragermanate structure. American Mineralogist, 1999, 84, 987-989.	1.9	14
158	Abiotic nitrogen reduction on the early Earth. Nature, 1998, 395, 365-367.	27.8	216
159	Crystal Chemistry of Cation Order–Disorder in Pseudobrookite-Type MgTi2O5. Journal of Solid State Chemistry, 1998, 138, 238-244.	2.9	46
160	High-pressure single-crystal X-ray diffraction and infrared spectroscopic studies of the C2/m-P2 ₁ /m phase transition in cummingtonite. American Mineralogist, 1998, 83, 288-299.	1.9	34
161	Increased Compressibility of Pseudobrookite-Type MgTi2O5Caused by Cation Disorder. Science, 1997, 277, 1965-1967.	12.6	46
162	Compressibility and crystal structure of kyanite, Al ₂ SiO ₅ , at high pressure. American Mineralogist, 1997, 82, 467-474.	1.9	61

#	Article	IF	CITATIONS
163	Structural change associated with the incommensurate-normal phase transition in akermanite, Ca 2 MgSi 2 O 7 , at high pressure. Physics and Chemistry of Minerals, 1997, 24, 510-519.	0.8	58
164	Compressibility and crystal structure of sillimanite, Al 2 SiO 5 , at high pressure. Physics and Chemistry of Minerals, 1997, 25, 39-47.	0.8	68
165	Crystal chemistry of superfluorous phase B (Mg ₁₀ Si ₃ O ₁₄ F ₄); implications for the role of fluorine in the mantle. American Mineralogist, 1997, 82, 647-650.	1.9	16
166	High-Pressure Framework Silicates. Science, 1996, 272, 1769-1771.	12.6	55
167	High-pressure crystal chemistry of LiScSiO ₄ ; an olivine with nearly isotropic compression. American Mineralogist, 1996, 81, 327-334.	1.9	17
168	Effects of pressure on order-disorder reactions. American Mineralogist, 1996, 81, 1021-1035.	1.9	88
169	Crystal chemistry of lead aluminosilicate hollandite; a new high-pressure synthetic phase with octahedral Si. American Mineralogist, 1995, 80, 937-940.	1.9	18
170	High-pressure crystal chemistry and phase transition of RbTi2(PO4)3. Journal of Physics Condensed Matter, 1994, 6, 1333-1344.	1.8	12
171	Comparative compressibilities of majorite-type garnets. Physics and Chemistry of Minerals, 1994, 21, 344.	0.8	61
172	X-ray diffraction and electronic band structure study of the organic superconductor ϰ-(ET)2Cu[N(CN)2]. Physica C: Superconductivity and Its Applications, 1994, 234, 300-306.	1.2	19
173	Keepers of the Flame: The Role of Fire in American Culture, 1775-1925. Technology and Culture, 1994, 35, 194.	0.1	0
174	Comparative Compressibilities of Silicate Spinels: Anomalous Behavior of (Mg,Fe)2SiO4. Science, 1993, 259, 206-209.	12.6	90
175	Composition Limits of FexO and the Earth's Lower Mantle. Science, 1993, 261, 923-924.	12.6	9
176	Achieving chemical literacy. Journal of Chemical Education, 1991, 68, 392.	2.3	8
177	Crystal chemistry of six-coordinated silicon: a key to understanding the earth's deep interior. Acta Crystallographica Section B: Structural Science, 1991, 47, 561-580.	1.8	78
178	Equation of state of solid hydrogen and deuterium from single-crystal x-ray diffraction to 26.5 GPa. Physical Review B, 1990, 42, 6458-6470.	3.2	167
179	Eight new high-temperature superconductors with the 1:2:4 structure. Physical Review B, 1989, 39, 7347-7350.	3.2	263
180	Crystal structure of DyBa2Cu4O8: A new 77 K bulk superconductor. Applied Physics Letters, 1989, 54, 1057-1059.	3.3	68

#	Article	IF	CITATIONS
181	Crystal chemistry of phase B and an anhydrous analogue: implications for water storage in the upper mantle. Nature, 1989, 341, 140-142.	27.8	79
182	Comparative compressibility of end-member feldspars. Physics and Chemistry of Minerals, 1988, 15, 313-318.	0.8	96
183	Perovskites. Scientific American, 1988, 258, 74-80.	1.0	77
184	Crystallography, chemistry and structural disorder in the new high- Tc Bi–Ca–Sr–Cu–O superconductor. Nature, 1988, 332, 334-337.	27.8	75
185	A silica-rich sodium pyroxene phase with six-coordinated silicon. Nature, 1988, 335, 156-158.	27.8	73
186	Hot from the laboratory. Nature, 1988, 335, 677-678.	27.8	2
187	Superconductivity in the high-TcBi-Ca-Sr-Cu-O system: Phase identification. Physical Review Letters, 1988, 60, 1174-1177.	7.8	567
188	100-K superconducting phases in the Tl-Ca-Ba-Cu-O system. Physical Review Letters, 1988, 60, 1657-1660.	7.8	407
189	Superconductivity in the Tl-Sr-Ca-Cu-O system. Physical Review B, 1988, 38, 7074-7076.	3.2	80
190	Synchrotron X-ray Diffraction Measurements of Single-Crystal Hydrogen to 26.5 Gigapascals. Science, 1988, 239, 1131-1134.	12.6	149
191	High-temperature crystal chemistry of sodium zirconium phosphate (NZP). Journal of Materials Research, 1987, 2, 329-337.	2.6	25
192	Single-crystal x-ray diffraction ofn-H2at high pressure. Physical Review B, 1987, 36, 3944-3947.	3.2	45
193	Crystallographic description of phases in the Y-Ba-Cu-O superconductor. Physical Review B, 1987, 35, 7238-7241.	3.2	298
194	High-pressure crystal chemistry of chrysoberyl, Al2BeO4: Insights on the origin of olivine elastic anisotropy. Physics and Chemistry of Minerals, 1987, 14, 13-20.	0.8	75
195	High-temperature crystal chemistry of phenakite (Be2SiO4) and chrysoberyl (BeAl2O4). Physics and Chemistry of Minerals, 1987, 14, 426-434.	0.8	24
196	Highâ€pressure and highâ€temperature crystal chemistry of beryllium oxide. Journal of Applied Physics, 1986, 59, 3728-3733.	2.5	185
197	Crystal structure of the high-pressure form of BiVO ₄ . Phase Transitions, 1986, 6, 165-173.	1.3	28
198	High-Pressure crystal chemistry of spinel (MgAl2O4) and magnetite (Fe3O4): Comparisons with silicate spinels. Physics and Chemistry of Minerals, 1986, 13, 215-220.	0.8	243

#	Article	IF	CITATIONS
199	High-pressure crystal chemistry of phenakite (Be2SiO4) and bertrandite (Be4Si2O7(OH)2). Physics and Chemistry of Minerals, 1986, 13, 69-78.	0.8	71
200	Crystals at High Pressure. Scientific American, 1985, 252, 110-117.	1.0	75
201	High-pressure crystal chemistry of scheelite-type tungstates and molybdates. Journal of Physics and Chemistry of Solids, 1985, 46, 253-263.	4.0	267
202	High-pressure behavior of LaNbO4. Acta Crystallographica Section B: Structural Science, 1985, 41, 179-184.	1.8	63
203	Polyhedral modeling of the elastic properties of corundum (αâ€Al ₂ O ₃) and chrysoberyl (Al ₂ BeO ₄). Geophysical Research Letters, 1985, 12, 725-728.	4.0	13
204	Mineralogy: A Historical Review. Journal of Geoscience Education, 1984, 32, 288-298.	0.2	10
205	Compressibility of zeolite 4A is dependent on the molecular size of the hydrostatic pressure medium. Journal of Applied Physics, 1984, 56, 1838-1840.	2.5	74
206	Raman and x-ray studies of a high-pressure phase transition inβ-LilO3and the study of anharmonic effects. Physical Review B, 1984, 30, 7212-7218.	3.2	8
207	Compressibilities and highâ€pressure phase transitions of sodium tungstate perovskites (NaxWO3). Journal of Applied Physics, 1984, 56, 311-313.	2.5	53
208	Wüstite (Fe _{1â€x} O): A review of its defect structure and physical properties. Reviews of Geophysics, 1984, 22, 37-46.	23.0	198
209	Compression, nonstoichiometry and bulk viscosity of wüstite. Nature, 1983, 304, 620-622.	27.8	29
210	Rockâ€ f orming silicates. Reviews of Geophysics, 1983, 21, 1399-1407.	23.0	2
211	Zeolite Molecular Sieve 4A: Anomalous Compressibility and Volume Discontinuities at High Pressure. Science, 1983, 219, 1065-1067.	12.6	93
212	Bismuth Vanadate: A High-Pressure, High-Temperature Crystallographic Study of the Ferroelastic-Paraelastic Transition. Science, 1982, 216, 991-993.	12.6	65
213	Emergence of Geology in Eighteenth-Century America. Journal of Geoscience Education, 1982, 30, 144-148.	0.2	1
214	Structure and compression of crystalline argon and neon at high pressure and room temperature. Applied Physics Letters, 1981, 39, 892-894.	3.3	143
215	Evidence for 4fâ€shell delocalization in praseodymium under pressure. Journal of Applied Physics, 1981, 52, 4572-4574.	2.5	64
216	Calcium fluoride as an internal pressure standard in high-pressure cyrstallography. Journal of Applied Crystallography, 1981, 14, 234-236.	4.5	106

#	Article	IF	CITATIONS
217	Bulk moduli and high-pressure crystal structures of rutile-type compounds. Journal of Physics and Chemistry of Solids, 1981, 42, 143-151.	4.0	215
218	Highâ€ŧemperature diamondâ€anvil pressure cell for single rystal studies. Review of Scientific Instruments, 1981, 52, 75-79.	1.3	86
219	A Bibliography for Historians of Geology. Geological Magazine, 1981, 118, 425-428.	1.5	0
220	Structure and compression of crystalline methane at high pressure and room temperature. Applied Physics Letters, 1980, 37, 288-289.	3.3	80
221	Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars. Journal of Applied Physics, 1980, 51, 5362.	2.5	510
222	Linear compressibilities of NaNO2and NaNO3. Journal of Applied Physics, 1979, 50, 6826-6828.	2.5	15
223	Crystal structure and compression of ruby to 46 kbar. Journal of Applied Physics, 1978, 49, 5823-5826.	2.5	185
224	Curve-Fitting. Science, 1978, 202, 823-823.	12.6	2
225	Crystal Chemistry of SiliconOxygen Bonds at High Pressure: Implications for the Earth's Mantle Mineralogy. Science, 1978, 201, 1122-1123.	12.6	62
226	Crystal structure and compositional variation of Angra dos Reis fassaite. Earth and Planetary Science Letters, 1977, 35, 357-362.	4.4	22
227	Temperature, pressure and composition: Structurally analogous variables. Physics and Chemistry of Minerals, 1977, 1, 83-94.	0.8	93
228	Sanidine: Predicted and Observed Monoclinic-to-Triclinic Reversible Transformations at High Pressure. Science, 1976, 194, 105-107.	12.6	28
229	The founding of geology in America: 1771 to 1818: Discussion and reply. Bulletin of the Geological Society of America, 1975, 86, 1616.	3.3	0
230	The Founding of Geology in America: 1771 to 1818. Bulletin of the Geological Society of America, 1974, 85, 1827.	3.3	18